DOI QR코드

DOI QR Code

Ginsenoside Re Inhibits Osteoclast Differentiation in Mouse Bone Marrow-Derived Macrophages and Zebrafish Scale Model

  • Park, Chan-Mi (World Class Institute (WCI), and Chemical biology Research Center, Korean Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Hye-Min (World Class Institute (WCI), and Chemical biology Research Center, Korean Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Dong Hyun (World Class Institute (WCI), and Chemical biology Research Center, Korean Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Han, Ho-Jin (World Class Institute (WCI), and Chemical biology Research Center, Korean Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Noh, Haneul (World Class Institute (WCI), and Chemical biology Research Center, Korean Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Jang, Jae-Hyuk (World Class Institute (WCI), and Chemical biology Research Center, Korean Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Park, Soo-Hyun (Clinical Trial Center for Functional Foods(CTCF2), Chonbuk National University Hospital) ;
  • Chae, Han-Jung (Clinical Trial Center for Functional Foods(CTCF2), Chonbuk National University Hospital) ;
  • Chae, Soo-Wan (Clinical Trial Center for Functional Foods(CTCF2), Chonbuk National University Hospital) ;
  • Ryu, Eun Kyoung (Center of Magnetic Resonance Research, Korea Basic Science Institute) ;
  • Lee, Sangku (World Class Institute (WCI), and Chemical biology Research Center, Korean Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Liu, Kangdong (World Class Institute (WCI), and Chemical biology Research Center, Korean Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Liu, Haidan (World Class Institute (WCI), and Chemical biology Research Center, Korean Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Ahn, Jong-Seog (World Class Institute (WCI), and Chemical biology Research Center, Korean Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Young Ock (Department of Medicinal Crop Research Institute, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Kim, Bo-Yeon (World Class Institute (WCI), and Chemical biology Research Center, Korean Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Soung, Nak-Kyun (World Class Institute (WCI), and Chemical biology Research Center, Korean Research Institute of Bioscience and Biotechnology (KRIBB))
  • Received : 2016.04.25
  • Accepted : 2016.11.07
  • Published : 2016.12.31

Abstract

Ginsenosides, which are the active materials of ginseng, have biological functions that include anti-osteoporotic effects. Aqueous ginseng extract inhibits osteoclast differentiation induced by receptor activator of NF-${\kappa}B$ ligand (RANKL). Aqueous ginseng extract produces chromatography peaks characteristic of ginsenosides. Among these peaks, ginsenoside Re is a major component. However, the preventive effects of ginsenoside Re against osteoclast differentiation are not known. We studied the effect of ginsenoside Re on osteoclast differentiation, RANKL-induced tartrate-resistant acid phosphatase (TRAP) activity, and formation of multinucleated osteoclasts in vitro. Ginsenoside Re hampered osteoclast differentiation in a dose-dependent manner. In an in vivo zebrafish model, aqueous ginseng extract and ginsenoside Re had anti-osteoclastogenesis effects. These findings suggest that both aqueous ginseng extract and ginsenoside Re prevent bone resorption by inhibiting osteoclast differentiation. Ginsenoside Re could be important for promoting bone health.

Keywords

References

  1. Biskobing, D.M., Fan, X., and Rubin, J. (1995). Characterization of MCSF-induced proliferation and subsequent osteoclast formation in murine marrow culture. J. Bone Miner. Res. 10, 1025-1032.
  2. Boyce, B.F., Xiu, Y., Li, J., Xing, L., and Yao, Z. (2015). NF-kappaB-mediated regulation of osteoclastogenesis. Endocrinol. Metabol. 30, 35-44. https://doi.org/10.3803/EnM.2015.30.1.35
  3. Boyle, W.J., Simonet, W.S., and Lacey, D.L. (2003). Osteoclast differentiation and activation. Nature 423, 337-342. https://doi.org/10.1038/nature01658
  4. Cheng, B., Li, J., Du, J., Lv, X., Weng, L., and Ling, C. (2012). Ginsenoside Rb1 inhibits osteoclastogenesis by modulating NF-kappaB and MAPKs pathways. Food Chem. Toxicol. 50, 1610-1615. https://doi.org/10.1016/j.fct.2012.02.019
  5. Goltzman, D. (2002). Discoveries, drugs and skeletal disorders. Nat. Rev. 1, 784-796.
  6. He, L., Lee, J., Jang, J.H., Lee, S.H., Nan, M.H., Oh, B.C., Lee, S.G., Kim, H.H., Soung, N.K., Ahn, J.S., et al. (2012). Ginsenoside Rh2 inhibits osteoclastogenesis through downregulation of NF-kappaB, NFATc1 and c-Fos. Bone 50, 1207-1213. https://doi.org/10.1016/j.bone.2012.03.022
  7. Huang, Q., Gao, B., Jie, Q., Wei, B.Y., Fan, J., Zhang, H.Y., Zhang, J.K., Li, X.J., Shi, J., Luo, Z.J., et al. (2014). Ginsenoside-Rb2 displays anti-osteoporosis effects through reducing oxidative damage and bone-resorbing cytokines during osteogenesis. Bone 66, 306-314. https://doi.org/10.1016/j.bone.2014.06.010
  8. Kemi, V.E., Karkkainen, M.U., Rita, H.J., Laaksonen, M.M., Outila, T.A. and Lamberg-Allardt, C.J. (2010). Low calcium:phosphorus ratio in habitual diets affects serum parathyroid hormone concentration and calcium metabolism in healthy women with adequate calcium intake. Br. J. Nutr. 103, 561-568. https://doi.org/10.1017/S0007114509992121
  9. Kim, H.R., Cui, Y., Hong, S.J., Shin, S.J., Kim, D.S., Kim, N.M., So, S.H., Lee, S.K., Kim, E.C., Chae, S.W., et al. (2008). Effect of ginseng mixture on osteoporosis in ovariectomized rats. Immunopharmacol. Immunotoxicol. 30, 333-345. https://doi.org/10.1080/08923970801949125
  10. Kong, Y.Y., Yoshida, H., Sarosi, I., Tan, H.L., Timms, E., Capparelli, C., Morony, S., Oliveira-dos-Santos, A.J., Van, G., Itie, A., et al. (1999). OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397, 315-323. https://doi.org/10.1038/16852
  11. Kropotov, A.V., Kolodnyak, O.L., and Koldaev, V.M. (2002). Effects of Siberian ginseng extract and ipriflavone on the development of glucocorticoid-induced osteoporosis. Bull. Exp. Biol. Med. 133, 252-254. https://doi.org/10.1023/A:1015834717178
  12. Lee, T.K., O'Brien, K.F., Wang, W., Johnke, R.M., Sheng, C., Benhabib, S.M., Wang, T., and Allison, R.R. (2010). Radioprotective effect of American ginseng on human lymphocytes at 90 minutes postirradiation: a study of 40 cases. J. Altern. Complement. Med. 16, 561-567. https://doi.org/10.1089/acm.2009.0590
  13. Lee, H.Y, Park, S.H., Chae, S.W., Soung, N.K., Oh, M.j., Kim, J.S., Kim, Y.O., and Chae, H.J. (2015). Aqueous ginseng extract has a preventive role in RANKL-induced osteoclast differentiation and estrogen deficiency-induced osteoporosis. J. Funct. Foods 13, 192-203. https://doi.org/10.1016/j.jff.2014.12.039
  14. Lim, Y.U., Sun, D.H., and Kim, Y.S. (2009). Etiological cause of osteoporosis and prevention of fracture by osteoporosis. J. Korean Hip Society 21.
  15. Polan, M.L., Hochberg, R.B., Trant, A.S., and Wuh, H.C. (2004). Estrogen bioassay of ginseng extract and ArginMax, a nutritional supplement for the enhancement of female sexual function. J. Women's Health 13, 427-430. https://doi.org/10.1089/154099904323087114
  16. Putnam, S.E., Scutt, A.M., Bicknell, K., Priestley, C.M., and Williamson, E.M. (2007). Natural products as alternative treatments for metabolic bone disorders and for maintenance of bone health. Phytotherapy Res. 21, 99-112. https://doi.org/10.1002/ptr.2030
  17. Shin, Y.W., Bae, E.A., Kim, S.S., Lee, Y.C., Lee, B.Y., and Kim, D.H. (2006). The effects of ginsenoside Re and its metabolite, ginsenoside Rh1, on 12-O-tetradecanoylphorbol 13-acetate- and oxazolone-induced mouse dermatitis models. Planta Medica 72, 376-378. https://doi.org/10.1055/s-2005-916217
  18. Siddiqi, M.H., Siddiqi, M.Z., Ahn, S., Kang, S., Kim, Y.J., Sathishkumar, N., Yang, D.U., and Yang, D.C. (2013). Ginseng saponins and the treatment of osteoporosis: mini literature review. J. Ginseng Res. 37, 261-268. https://doi.org/10.5142/jgr.2013.37.261
  19. Siddiqi, M.H., Siddiqi, M.Z., Kang, S., Noh, H.Y., Ahn, S., Simu, S.Y., Aziz, M.A., Sathishkumar, N., Jimenez Perez, Z.E., and Yang, D.C. (2015). Inhibition of osteoclast differentiation by ginsenoside Rg3 in RAW264.7 cells via RANKL, JNK and p38 MAPK pathways through a modulation of cathepsin K: an in silico and in vitro study. Phytother. Res. [Epub ahead of print].
  20. Takayanagi, H., Kim, S., Koga, T., Nishina, H., Isshiki, M., Yoshida, H., Saiura, A., Isobe, M., Yokochi, T., Inoue, J., et al. (2002). Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev. Cell 3, 889-901. https://doi.org/10.1016/S1534-5807(02)00369-6
  21. Tanaka, S., Takahashi, N., Udagawa, N., Tamura, T., Akatsu, T., Stanley, E.R., Kurokawa, T., and Suda, T. (1993). Macrophage colony-stimulating factor is indispensable for both proliferation and differentiation of osteoclast progenitors. J. Clin. Invest. 91, 257-263. https://doi.org/10.1172/JCI116179
  22. Teitelbaum, S.L., and Ross, F.P. (2003). Genetic regulation of osteoclast development and function. Nat. Rev. Genet. 4, 638-649. https://doi.org/10.1038/nrg1122
  23. van den Heuvel, E.G., Schoterman, M.H., and Muijs, T. (2000). Transgalactooligosaccharides stimulate calcium absorption in postmenopausal women. J. Nutr. 130, 2938-2942. https://doi.org/10.1093/jn/130.12.2938
  24. Wei, S., Wang, M.W., Teitelbaum, S.L., and Ross, F.P. (2002). Interleukin-4 reversibly inhibits osteoclastogenesis via inhibition of NF-kappa B and mitogen-activated protein kinase signaling. J. Biol. Chem. 277, 6622-6630. https://doi.org/10.1074/jbc.M104957200
  25. World Health Organization (2004). WHO scientific group on the assessment of osteoporosis at primary health care level.

Cited by

  1. Ginsenoside Re Promotes Osteoblast Differentiation in Mouse Osteoblast Precursor MC3T3-E1 Cells and a Zebrafish Model vol.22, pp.1, 2016, https://doi.org/10.3390/molecules22010042
  2. Zebrafish as a model to study autophagy and its role in skeletal development and disease vol.154, pp.5, 2016, https://doi.org/10.1007/s00418-020-01917-2
  3. Uptake of osteoblast-derived extracellular vesicles promotes the differentiation of osteoclasts in the zebrafish scale vol.3, pp.1, 2016, https://doi.org/10.1038/s42003-020-0925-1
  4. 10-Gingerol Suppresses Osteoclastogenesis in RAW264.7 Cells and Zebrafish Osteoporotic Scales vol.9, pp.None, 2021, https://doi.org/10.3389/fcell.2021.588093
  5. Effect of Ginseng Extracts on the Improvement of Osteopathic and Arthritis Symptoms in Women with Osteopenia: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial vol.13, pp.10, 2016, https://doi.org/10.3390/nu13103352