• Title/Summary/Keyword: in vitro Differentiation

Search Result 749, Processing Time 0.021 seconds

Construction and Characterization of Novel Expression Vectors for Genetic Adipose Tissue Ablation

  • Ko, Duck Sung;Choi, Woong Hwan;Kim, Chul Geun
    • Animal cells and systems
    • /
    • v.2 no.2
    • /
    • pp.249-258
    • /
    • 1998
  • Obesity, one of the most common metabolic diseases in industrial countries is characterized by an increase in the number or size of adipocytes. In an effort to create transgenic mouse models for the study of obesity we developed a novel technique in which adipose tissue can be ablated genetically at will, at any specific developmental stage and/or physiological condition, by the treatment of ganciclovir. We made a series of adipocytespecific expression vectors using minimal regulatory regions of brown adipocyte-specific uncoupling protein (UCP-1) gene and adipocyte-specific aP2 gene, and then analyzed their expression characteristics in cultured cell lines. When both constructs pUCP-LacZ and paP2-LacZ were transfected transiently into differentiating 3T3-L1 (pre-while adipocytes) and HIB-1B (pre-brown adipocytes) cell lines in vitro and then monitored by X-gal staining of cells, these regulatory regions were sufficient to show proper differentiation stage-specific expression in adipocvtes. To confirm that adipocytes expressing HSV-TK controlled by these minimal requlatory elements are sufficient to kill themselves with ganciclovir treatment pUCP-TK and paP2-TK expression constructs were transfected stably into HIB-1B and 3T3-L1 cells, respectively, and their ganciclovir sensitivities were tested during in vitro differentiation of cells. As expected more than 80% of cells were dead by the 7th day of treatment with ganciclovir while negative control cells were not affected at all. The data suqqest that the constructed vectors are suitable for obtaining novel obese transqenic models based on a conditional genetic tissue ablation method.

  • PDF

Establishment of Immortalized Primary Human Foreskin Keratinocytes and Their Application to Toxicity Assessment and Three Dimensional Skin Culture Construction

  • Choi, Moonju;Park, Minkyung;Lee, Suhyon;Lee, Jeong Woo;Cho, Min Chul;Noh, Minsoo;Lee, Choongho
    • Biomolecules & Therapeutics
    • /
    • v.25 no.3
    • /
    • pp.296-307
    • /
    • 2017
  • In spite of frequent usage of primary human foreskin keratinocytes (HFKs) in the study of skin biology, senescence-induced block-age of in vitro proliferation has been a big hurdle for their effective utilization. In order to overcome this passage limitation, we first isolated ten HFK lines from circumcision patients and successfully immortalized four of them via a retroviral transduction of high-risk human papillomavirus (HPV) E6 and E7 oncogenes. We confirmed expression of a keratinocyte marker protein, keratin 14 and two viral oncoproteins in these immortalized HFKs. We also observed their robust responsiveness to various exogenous stimuli, which was evidenced by increased mRNA expression of epithelial differentiation markers and pro-inflammatory genes in response to three reactive chemicals. In addition, their applicability to cytotoxicity assessment turned out to be comparable to that of HaCaT cells. Finally, we confirmed their differentiation capacity by construction of well-stratified three dimensional skin cultures. These newly established immortalized HFKs will be valuable tools not only for generation of in vitro skin disease models but also for prediction of potential toxicities of various cosmetic chemicals.

Hydroxychavicol Inhibits In Vitro Osteoclastogenesis via the Suppression of NF-κB Signaling Pathway

  • Sirada Srihirun;Satarat Mathithiphark;Chareerut Phruksaniyom;Pitchanun Kongphanich;Wisutthaporn Inthanop;Thanaporn Sriwantana;Salunya Tancharoen;Nathawut Sibmooh;Pornpun Vivithanaporn
    • Biomolecules & Therapeutics
    • /
    • v.32 no.2
    • /
    • pp.205-213
    • /
    • 2024
  • Hydroxychavicol, a primary active phenolic compound of betel leaves, previously inhibited bone loss in vivo by stimulating osteogenesis. However, the effect of hydroxychavicol on bone remodeling induced by osteoclasts is unknown. In this study, the anti-osteoclastogenic effects of hydroxychavicol and its mechanism were investigated in receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclasts. Hydroxychavicol reduced the number of tartrate resistance acid phosphatase (TRAP)-positive multinucleated, F-actin ring formation and bone-resorbing activity of osteoclasts differentiated from RAW264.7 cells in a concentration-dependent manner. Furthermore, hydroxychavicol decreased the expression of osteoclast-specific genes, including cathepsin K, MMP-9, and dendritic cell-specific transmembrane protein (DC-STAMP). For mechanistic studies, hydroxychavicol suppressed RANKL-induced expression of major transcription factors, including the nuclear factor of activated T-cells 1 (NFATc1), c-Fos, and c-Jun. At the early stage of osteoclast differentiation, hydroxychavicol blocked the phosphorylation of NF-κB subunits (p65 and Iκβα). This blockade led to the decrease of nuclear translocation of p65 induced by RANKL. In addition, the anti-osteoclastogenic effect of hydroxychavicol was confirmed by the inhibition of TRAP-positive multinucleated differentiation from human peripheral mononuclear cells (PBMCs). In conclusion, hydroxychavicol inhibits osteoclastogenesis by abrogating RANKL-induced NFATc1 expression by suppressing the NF-κB signaling pathway in vitro.

Osteogenic Differentiation of Bone Marrow Stem Cell using Bi-phase Alginate Scaffold Including BMP-2 (BMP-2를 함유한 2상 알지네이트 담체를 이용한 골수줄기세포의 골분화)

  • Lim, Hyun-Ju;Kim, Hak-Tae;Oh, Eun-Jung;Kim, Tae-Jung;Ghim, Han-Do;Choi, Jin-Hyun;Chung, Ho-Yun
    • Archives of Plastic Surgery
    • /
    • v.37 no.3
    • /
    • pp.207-212
    • /
    • 2010
  • Purpose: The object of this study is to develop a novel BMP-2 delivery system for continuous osteogenic differentiation and to induce osteogenesis of stem cells using a bi-phase alginate carrier in vitro. Methods: Alginate nanoparticle loaded BMP-2 was prepared by the reverse emulsification-diffusion technique. Physical properties and release profiles of alginate carriers were measured by Instron and ELISA kit, respectively. Cell viability and alkaline phosphate activity of hBMSCs differentiation was also evaluated by MTS and Metra BAP assays, respectively. Results: Optimal concentration for bi-phase alginate carrier was determined as 2 wt% by evaluating mechanical and biological properties, and differentiation of BMSCs for bone regeneration. The 2% bi-phase alginate carrier had the lowest initial and final release ratio. In addition, the 2% bi-phase alginate carrier had a little higher ALP activity than the homogeneous carrier. An improved controlled release profile was obtained by combining alginate hydrogel with lyophilized particles. Conclusion: Bi-phase alginate carrier has many advantages such as biocompatibility and controlled release capability. It is expected to be effective as a scaffold and carrier in bone tissue engineering.

The roles of growth factors and hormones in the regulation of muscle satellite cells for cultured meat production

  • Syed Sayeed Ahmad;Hee Jin Chun;Khurshid Ahmad;Sibhghatulla Shaikh;Jeong Ho Lim;Shahid Ali;Sung Soo Han;Sun Jin Hur;Jung Hoon Sohn;Eun Ju Lee;Inho Choi
    • Journal of Animal Science and Technology
    • /
    • v.65 no.1
    • /
    • pp.16-31
    • /
    • 2023
  • Cultured meat is a potential sustainable food generated by the in vitro myogenesis of muscle satellite (stem) cells (MSCs). The self-renewal and differentiation properties of MSCs are of primary interest for cultured meat production. MSC proliferation and differentiation are influenced by a variety of growth factors such as insulin-like growth factors (IGF-1 and IGF-2), transforming growth factor beta (TGF-β), fibroblast growth factors (FGF-2 and FGF-21), platelet-derived growth factor (PDGF) and hepatocyte growth factor (HGF) and by hormones like insulin, testosterone, glucocorticoids, and thyroid hormones. In this review, we investigated the roles of growth factors and hormones during cultured meat production because these factors provide signals for MSC growth and structural stability. The aim of this article is to provide the important idea about different growth factors such as FGF (enhance the cell proliferation and differentiation), IGF-1 (increase the number of myoblasts), PDGF (myoblast proliferation), TGF-β1 (muscle repair) and hormones such as insulin (cell survival and growth), testosterone (muscle fiber size), dexamethasone (myoblast proliferation and differentiation), and thyroid hormones (amount and diameter of muscle fibers and determine the usual pattern of fiber distributions) as media components during myogenesis for cultured meat production.

Different Potential of Hematopoietic Differentiation in Two Distinct Mouse Embryonic Stem Cells (두 개의 다른 마우스 배아줄기세포의 차별적인 조혈세포 분화능)

  • Kim, Jin-Sook;Kang, Ho-Bum;Song, Jee-Yeon;Oh, Goo-Taeg;Nam, Ki-Hoan;Lee, Young-Hee
    • Development and Reproduction
    • /
    • v.9 no.2
    • /
    • pp.105-114
    • /
    • 2005
  • Embryonic stem(ES) cells have tremendous potential as a cell source for cell-based therapies. Realization of that potential will depend on our ability to understand and manipulate the factors that influence cell fate decision and to develop methods for getting enough cell numbers for clinical applications. Hematopoiesis has been widely studied, and hematopoietic differentiation from ES cells is a good model to study lineage commitment. In this study, we investigated stemness and compared the efficiency of hematopoietic differentiation using two different mouse embryonic stem cell lines TC-1 and B6-1. Although the two cell lines showed known stem cell properties with minor differences, the embryoid body formation efficiency in methylcellulose was much higher in TC-1 than B6-1. When measured potentials of hematopoietic differentiation using functional(colony-forming cell) and phenotypic(specific marker expression) assays, we found that TC-1 can differentiate into hematopoietic cells in methylcellulose culture but B6-1 cannot. These results imply that we can improve the efficiency of hematopoietic cell differentiation by selection of proper cell lines and this may be also applied in the differentiation of human embryonic stem cells.

  • PDF

3D Bioprinted GelMA/PEGDA Hybrid Scaffold for Establishing an In Vitro Model of Melanoma

  • Duan, Jiahui;Cao, Yanyan;Shen, Zhizhong;Cheng, Yongqiang;Ma, Zhuwei;Wang, Lijing;Zhang, Yating;An, Yuchuan;Sang, Shengbo
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.4
    • /
    • pp.531-540
    • /
    • 2022
  • Due to the high incidence of malignant melanoma, the establishment of in vitro models that recapitulate the tumor microenvironment is of great biological and clinical importance for tumor treatment and drug research. In this study, 3D printing technology was used to prepare GelMA/PEGDA composite scaffolds that mimic the microenvironment of human malignant melanoma cell (A375) growth and construct in vitro melanoma micro-models. The GelMA/PEGDA hybrid scaffold was tested by the mechanical property, cell live/dead assay, cell proliferation assay, cytoskeleton staining and drug loading assay. The growth of tumor cells in two- and three-dimensional culture systems and the anti-cancer effect of luteolin were evaluated using the live/dead staining method and the Cell Counting Kit-8 (CCK-8) method. The results showed a high aggregation of tumor cells on the 3D scaffold, which was suitable for long-term culture. Cytoskeleton staining and immunofluorescent protein staining were used to evaluate the degree of differentiation of tumor cells under 2D and 3D culture systems. The results indicated that 3D bioprinted scaffolds were more suitable for tumor cell expansion and differentiation, and the tumor cells were more aggressive. In addition, luteolin was time- and dose-dependent on tumor cells, and tumor cells in the 3D culture system were more resistant to the drug.

Differentiation Induction of Dendritic Cell Phenotypes from Human Leukemic Cell Lines

  • Lee, Dae-Heui;Park, Jae-Sun;Eo, Wan-Kyu;Kim, Woo-Mi;Kang, Koo-Il
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.1
    • /
    • pp.79-86
    • /
    • 2001
  • Recent clinical studies have shown that a high proportion of patients with acute promyelocytic leukemia (APL) achieve complete remission after treatment with all-trans retinoic acid (ATRA). However, most patients who receive continuous treatment with ATRA relapse and develop ATRA-resistant leukemia. Dendritic cells (DCs) are important antigen-presenting cells in the development of antileukemic T-cell responses. In this study, we investigated the strategies to overcome ATRA resistance of APL cells by inducing the differentiation of DCs from human leukemic cell lines for the developtment of adoptive immunotherapy. CD83 was used as a mature DC marker in this study and the expression of CD83 mRNA was determined by RT-PCR method. The promyelocytic leukemic cell line HL-60, B lymphoblast cell lines RPMI 7666 and NC-37 could be induced to dendritic cells in vitro. Treatment of HL-60 with phorbol 12-myristate 13-acetate (PMA) resulted in the expression of myeloid-related DC phenotypes, while treatment of RPMI 7666 with fms-like tyrosine kinase 3 ligand (Flt3-ligand, FL) and treatment of NC-37 with PMA and FL led to the expression of lymphoid-related DC phenotypes. In conclusion, myeloid-related DC phenotypes and lymphoid-related DC phenotypes could be generated from HL-60, NC-37 and RPMI 7666 cell lines, respectively. These DC phenotypes can potentially be used to generate antileukemic T cells in vitro for adoptive immunotherapy.

  • PDF

Isolation of human mesenchymal stem cells from the skin and their neurogenic differentiation in vitro

  • Byun, Jun-Ho;Kang, Eun-Ju;Park, Seong-Cheol;Kang, Dong-Ho;Choi, Mun-Jeong;Rho, Gyu-Jin;Park, Bong-Wook
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.38 no.6
    • /
    • pp.343-353
    • /
    • 2012
  • Objectives: This aim of this study was to effectively isolate mesenchymal stem cells (hSMSCs) from human submandibular skin tissues (termed hSMSCs) and evaluate their characteristics. These hSMSCs were then chemically induced to the neuronal lineage and analyzed for their neurogenic characteristics in vitro. Materials and Methods: Submandibular skin tissues were harvested from four adult patients and cultured in stem cell media. Isolated hSMSCs were evaluated for their multipotency and other stem cell characteristics. These cells were differentiated into neuronal cells with a chemical induction protocol. During the neuronal induction of hSMSCs, morphological changes and the expression of neuron-specific proteins (by fluorescence-activated cell sorting [FACS]) were evaluated. Results: The hSMSCs showed plate-adherence, fibroblast-like growth, expression of the stem-cell transcription factors Oct 4 and Nanog, and positive staining for mesenchymal stem cell (MSC) marker proteins (CD29, CD44, CD90, CD105, and vimentin) and a neural precursor marker (nestin). Moreover, the hSMSCs in this study were successfully differentiated into multiple mesenchymal lineages, including osteocytes, adipocytes, and chondrocytes. Neuron-like cell morphology and various neural markers were highly visible six hours after the neuronal induction of hSMSCs, but their neuron-like characteristics disappeared over time (24-48 hrs). Interestingly, when the chemical induction medium was changed to Dulbecco's Modified Eagle Medium (DMEM) supplemented with fetal bovine serum (FBS), the differentiated cells returned to their hSMSC morphology, and their cell number increased. These results indicate that chemically induced neuron-like cells should not be considered true nerve cells. Conclusion: Isolated hSMSCs have MSC characteristics and express a neural precursor marker, suggesting that human skin is a source of stem cells. However, the in vitro chemical neuronal induction of hSMSC does not produce long-lasting nerve cells and more studies are required before their use in nerve-tissue transplants.

Characteristics and response of mouse bone marrow derived novel low adherent mesenchymal stem cells acquired by quantification of extracellular matrix

  • Zheng, Ri-Cheng;Kim, Seong-Kyun;Heo, Seong-Joo;Koak, Jai-Young;Lee, Joo-Hee;Park, Ji-Man
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.5
    • /
    • pp.351-360
    • /
    • 2014
  • PURPOSE. The aim of present study was to identify characteristic and response of mouse bone marrow (BM) derived low-adherent bone marrow mesenchymal stem cells (BMMSCs) obtained by quantification of extracellular matrix (ECM). MATERIALS AND METHODS. Non-adherent cells acquired by ECM coated dishes were termed low-adherent BMMSCs and these cells were analyzed by in vitro and in vivo methods, including colony forming unit fibroblast (CFU-f), bromodeoxyuridine (BrdU), multi-potential differentiation, flow cytometry and transplantation into nude mouse to measure the bone formation ability of these low-adherent BMMSCs. Titanium (Ti) discs with machined and anodized surfaces were prepared. Adherent and low-adherent BMMSCs were cultured on the Ti discs for testing their proliferation. RESULTS. The amount of CFU-f cells was significantly higher when non-adherent cells were cultured on ECM coated dishes, which was made by 7 days culturing of adherent BMMSCs. Low-adherent BMMSCs had proliferation and differentiation potential as adherent BMMSCs in vitro. The mean amount bone formation of adherent and low-adherent BMMSCs was also investigated in vivo. There was higher cell proliferation appearance in adherent and low-adherent BMMSCs seeded on anodized Ti discs than machined Ti discs by time. CONCLUSION. Low-adherent BMMSCs acquired by ECM from non-adherent cell populations maintained potential characteristic similar to those of the adherent BMMSCs and therefore could be used effectively as adherent BMMSCs in clinic.