• Title/Summary/Keyword: in situ monitoring

Search Result 482, Processing Time 0.03 seconds

Rubblization of Thick Concrete Pavement (두꺼운 콘크리트포장의 원위치파쇄 기층화공법)

  • Lee Seung-Woo;Han Seung-Hwan;Ko Suck-Bum;Kim Ji-Won
    • International Journal of Highway Engineering
    • /
    • v.8 no.3 s.29
    • /
    • pp.105-114
    • /
    • 2006
  • A popular alternative to extend the life of aged pavement is asphalt overlay. However, it has a very serious and inherent shortcoming in deterring a reflection crack. Although joint-rehabilitation and stress-relief techniques have been applied to deter such reflection cracks in aged pavement, the techniques had a limited success only in slowing down the progress of a reflection crack. Rubblization technique rubblizes the concrete pavement slab in situ and uses the rubblized slab as the base material. Then, pavement overlay is applied to finish off the rehabilitation of aged pavement. This rubblization technique has the advantage of solving the problem of reflection cracking completely. When rubblization technique is applied, the upper layer of aged concrete pavement is rubblized between 40mm-70mm in depth. However, the lower layer is typically rubblized more than 100mm in depth. Nevertheless, it is difficult to turn the entire concrete pavement of more than 30cm in depth into rubblized aggregate of appropriate size. Thus, a simulation experiment was carried out to find the appropriate rubblized depth, which avoids the reflection cracking and still maintains the function of subbase, by varying the depth of rubblized depth in loom increments of 0cm, 10cm, and 20cm. The result indicated the optimum rubblized depth was 10cm (Lee, 2006). Additionally, a small rubblizinge equipment was developed in order to derive the rubblization technique appropriate for thick concrete pavement. This equipment was tested out on an experimental pavement, which was constructed with the same standard and specification for the road in actual use, by varying its rubblizing head shape and energy as well as the effective area of rubblization. This experiment led to a prototype equipment for rubblization of thick concrete pavement. The prototype was put into use on a highway, undergoing a test construction and monitoring afterwards. This entire process was necessary for the validation of the proposed rubblization technique.

  • PDF

Short-term Nutrient Enrichment Bioassays (NEBs) by Manipulation of TN:TP Ratios and the Response of Primary Productivity (as Chlorophyll-a) (N:P Ratio 조절에 의한 단기 영양염 첨가 바이오에세이(NEBs) 및 1차 생산력(엽록소-a)의 반응성 테스트)

  • Jeong, Da-Bin;An, Kwang-Guk
    • Korean Journal of Environmental Biology
    • /
    • v.31 no.4
    • /
    • pp.383-392
    • /
    • 2013
  • The objective of this study was to determine the effects of N:P ratio on primary productivity measured as chlorophyll-a (CHL) using the approach of In Situ Nutrient Enrichment Bioassays (NEBs) in Daechung Reservoir. The effects of NEBs on the N:P mass ratios were compared with the field data obtained from monthly-chemical monitoring during 2009~2012. The short-term NEBs showed that the response of primary productivity in the phosphorus spiked treatments (5, 15, 20 and 30 N:P ratios) were greater than the responses in the control (C) and nitrogen spiked treatment (N:P ratio=150, $T_{VI}$). The response in the nitrogen treatment (N:P ratio=150, $T_{VI}$) was less compared to control and all five treatments ($T_I{\sim}T_{VI}$). The outcomes of the NEBs suggest that phosphorus limited the phytoplankton growth and nitrogen addition inhibited the algal growth. In the analysis of nutrients and CHL from the ambient epilimnetic water in Daechung Reservoir, minimum N:P ratios resulted in maximum concentrations of CHL. Overall, our results suggest that the N:P ratio was the key factor in regulating the phytoplankton growth in NEB experiments.

Evaluation of Bio-Chemical Restoration Index at the Creation Site of Ecological Environmental Zone in Coastal Area (연안생태환경공간 조성지의 생물-화학적 복원지수 평가)

  • Lee, In-Cheol;Yi, Byung Ho;Park, So Young;Ryu, Cheong Ro
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1B
    • /
    • pp.161-168
    • /
    • 2008
  • The ecological environmental zones in coastal area, like tidal flat and salt marsh, were gradually decreased due to large scale of coastal development projects, reclamation and so on. Therefore, the development of artificial tidal flat and salt marsh has been emphasized in coastal area as mitigation concept and studies on related this background has performed. But studies on the quantitative evaluation for degree of restoration were insufficient. In this paper, as a fundamental study for evaluation of restoration on the creation of ecological environmental zones in coastal area, it was conducted that the monitoring and experiment for bio-chemical factors (bio-diversity, population and biomass of macro-benthos, survival ratio of reed, the number of heterotrophic bacteria and physico-chemical characteristics such as COD, IL, TN, TP and pH) using a in-situ pilot plant of tidal flat (Zone. P1) and salt marsh (Zone. P2), which was distinguished by content of dredged soil, in Jinudo, Nakdong estuary. From results of this study, the restoration index (RI), for evaluation concerning degree of restoration on the creation of ecological environmental zones in coastal area, was suggested and quantitative evaluation was performed using a restoration index (RI).

Characteristics of the Smear Zone by Vertical Drain of Low Plasticity on Soft Ground (저소성 연약지반에서의 스미어 존 특성 평가)

  • Kang, Yun;Baek, Sungchul;Kim, Hongtaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.3
    • /
    • pp.27-33
    • /
    • 2007
  • The vertical drain method recently being used in Korea is one of the popular soft ground improvement methods, and it is divided into the sand drain method, the pack drain method, the paper drain method, and the PBD method according to the drainage. However, these methods generate the disturbed zone called the smear zone when the drainage is penetrated into the in-situ ground. The characteristics of the smear zone generated cause the problems that the coefficient of permeability decreases, and then the consolidation time in the design becomes longer than expected. Even though the coefficient of horizontal consolidation and the coefficient of permeability in the smear zone are very important design factors directly influencing the degree of consolidation, in the existing studies, these coefficients have been empirically derived by the coefficient of vertical consolidation and used for the design. However, in case that these coefficients derived by the coefficient of vertical consolidation are applied to the actual design, a loss of the duration of construction and a loss of economical efficiency can be happened because of the inaccuracy of the coefficient of horizontal consolidation and the coefficient of permeability. Hence, in this study, in order to understand such influence, the laboratory test was carried out so as to reasonably determine the coefficient of permeability and the coefficient of consolidation in diverse ground conditions. Then, the range of smear effect on clay and silt was estimated with monitoring data through the laboratory test.

  • PDF

Development of Plant Phenology and Snow Cover Detection Technique in Mountains using Internet Protocol Camera System (무인카메라 기반 산악지역 식물계절 및 적설 탐지 기술 개발)

  • Keunchang, Jang;Jea-Chul, Kim;Junghwa, Chun;Seokil, Jang;Chi Hyeon, Ahn;Bong Cheol, Kim
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.4
    • /
    • pp.318-329
    • /
    • 2022
  • Plant phenology including flowering, leaf unfolding, and leaf coloring in a forest is important to understand the forest ecosystem. Temperature rise due to recent climate change, however, can lead to plant phenology change as well as snowfall in winter season. Therefore, accurate monitoring of forest environment changes such as plant phenology and snow cover is essential to understand the climate change effect on forest management. These changes can monitor using a digital camera system. This paper introduces the detection methods for plant phenology and snow cover at the mountain region using an unmanned camera system that is a way to monitor the change of forest environment. In this study, the Automatic Mountain Meteorology Stations (AMOS) operated by Korea Forest Service (KFS) were selected as the testbed sites in order to systematize the plant phenology and snow cover detection in complex mountain areas. Multi-directional Internet Protocol (IP) camera system that is a kind of unmanned camera was installed at AMOS located in Seoul, Pyeongchang, Geochang, and Uljin. To detect the forest plant phenology and snow cover, the Red-Green-Blue (RGB) analysis based on the IP camera imagery was developed. The results produced by using image analysis captured from IP camera showed good performance in comparison with in-situ data. This result indicates that the utilization technique of IP camera system can capture the forest environment effectively and can be applied to various forest fields such as secure safety, forest ecosystem and disaster management, forestry, etc.

Analysis of Rock Slope Stability for Natural Slope and Cut Slope of Gneiss Area in Andong, Korea (편마암지역 자연사면.절취사면의 안정성 분석 사례)

  • Kim, Man-Il;Bae, Du-Won;Kim, Jong-Tae;Chae, Byung-Gon;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.17 no.2 s.52
    • /
    • pp.289-297
    • /
    • 2007
  • Slope failure that is occurred by rainfall generates a lot of property damages and loss of lives. Slope stability management and reinforcement countermeasure can be attained through continuous monitoring about various slope types that adjoin in human's life for reducing slope failure from natural and artificial cut slope hazards. The study area is rock slope that is consisted of gneiss, and large scale joint set is ranging by fault activity. This rock mass is exposed during long period and has lithological weathering property of weathered rock or soft rock. In-situ investigation carried out after divide by natural slope and cut slope. As a result, the natural slope appeared to high possibility of planar failure and wedge failure in few joint points that main joint set is formed. On the other hand, slope failure conformation in cut slope was superior only wedge failure occurrence possibility in eight joint points. In result of numerical analysis using SLIDE 2D, the minimum safety factor was analyzed slope stability for cut slope relatively low than natural slope in this study.

A Case Study on Elephant Foot Method for Railway Tunneling in Large Fault Zone (대규모 단층대구간에서의 철도터널 우각부 보강공법 적용성 연구)

  • Lee, Gilyong;Oh, Jeongho;Cho, Kyehwan;Lee, Doosoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.1161-1167
    • /
    • 2016
  • In this study, an attempt was made to conduct a case study on the development of ground expansive displacement due to lack of bearing capacity of original ground in spite of applying reinforcement treatments that intended to enhance the stability of big size high-speed rail tunnel in large fault zone. For the purpose of this, in-situ measurements made in the middle of excavation stage were analyzed in order to characterize ground responses and numerical analysis was performed to evaluate the effectiveness of reinforcement technique such as elephant foot method applied for this site via comparing with field monitoring measurements. In addition, further numerical studies were carried out to investigate the influence of leg pile installation angle and length, which is one of types of elephant foot method. The results revealed that the optimum condition for the leg pile installation is to maintain 45 degree of installation angle along with 6 meter of embedment depth.

Changes in Salinity, Hydraulic Conductivity and Penetration Resistance of a Silt Loam Soil in a Reclaimed Tidal Land (미사질 양토인 간척지 토양에서의 염류도와 수리전도도 및 관입 저항의 변화)

  • Jung, Yeong-Sang;Yoo, Sun-Ho;An, Yeol;Joo, Jin-Ho;Yu, Il-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.4
    • /
    • pp.207-215
    • /
    • 2002
  • Changes in salinity, hydraulic conductivity and penetration resistance in a reclaimed tidal land reclaimed in 1986 were studied. The salinity monitoring based on electrical conductivity of saturated extract, ECe, was conducted from 1994, when the land use for experimental crop production started after tile drainage. The site was abandoned since 1999. The hydraulic conductivity was measured by a sand fill auger hole method, and the resistance was measured with a dynamic penetrometer in situ. The averaged ECe in 1994 was $33.7dS\;m^{-1}$ ranging from 25.5 to $44.8dS\;m^{-1}$, and was decreased to $25.7dS\;m^{-1}$ with large range from 0.8 to $70.3dS\;m^{-1}$ before experiment was $1.89{\times}10^{-7}m\;s^{-1}$. It increased to $1.32{\times}10^6m\;s^{-1}$ in the top 20-cm soil with large variability, while it showed $3.44{\times}10^7m\;s^{-1}$ beneath the 20-cm soil depth with less variability. The penetration resistance of the soil ranged from 0.05 to 9.99MPa. The vertical distribution of penetration resistance indicated the hardened layer was developed at the depth of 20~40 cm where the hydraulic conductivity was sharply decreased.

Prediction of Total Phosphorus (T-P) in the Nakdong River basin utilizing In-Situ Sensor-Derived water quality parameters (직독식 센서 측정 항목을 활용한 낙동강 유역의 총인(T-P) 예측 연구)

  • Kang, YuMin;Nam, SuHan;Kim, YoungDo
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.7
    • /
    • pp.461-470
    • /
    • 2024
  • This study aimed to predict total phosphorus (T-P) to address early eutrophication caused by nutrient influx from various human activities. Traditional T-P monitoring systems are labor-intensive and time-consuming, leading to a global trend of using direct reading sensors. Therefore, this study utilized water quality parameters obtained from direct reading sensors in a two-stage T-P prediction process. The importance of turbidity (Tur) in T-P prediction was examined, and an analysis was conducted to determine if T-P prediction is possible using only direct reading sensor parameters by adding automatic water quality analyzer parameters. The study found that T-P concentrations were higher in the mid-lower reaches of the Nakdong River basin compared to the upper reaches. Pearson correlation analysis identified water quality parameters highly correlated with T-P at each site, which were then used in multiple linear regression analysis to predict T-P. The analysis was conducted with and without the inclusion of Tur, and the performance of models incorporating automatic water quality analyzer parameters was compared with those using only direct reading sensor parameters. The results confirmed the significance of Tur in T-P prediction, suggesting that it can be used as a foundational element in the development of measures to prevent eutrophication.

Field Tests for Assessing the Bioremediation Feasibility of a Trichloroethylene-Contaminated Aquifer (관측정 자연표류 실험을 통한 트리클로로에틸렌(Trichloroethylene) 오염 지하수의 생물학적 복원 타당성 연구)

  • Kim Young;Kim Jin-Wook;Ha Chul-Yoon;Kim Nam-Hee;Hong Kwang-Pyo;Kwon Soo-Yul;Ahn Young-Ho;Ha Joon-Su;Park Hoo-Won
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.3
    • /
    • pp.38-45
    • /
    • 2005
  • The feasibility of stimulating in situ aerobic cometabolic activity of indigenous microorganisms was investigated in a trichloroethylene (TCE)-contaminated aquifer. A series of single-well natural drift tests (SWNDTs) was conducted by injecting site groundwater amended with a bromide tracer and combinations of toluene, oxygen, nitrate, ethylene and TCE into an existing monitoring well and by sampling the same well over time. Three field tests, Push-pull Transport Test, Drift Biostimulation Test, and Drift Surrogate Activity Test, were performed in sequence. Initial rate of toluene degradation was much faster than the rate of bromide dilution resulting from natural groundwater drift, indicating stimulation of indigenous toluene-oxidizing microorganisms. Transformation of ethylene, a surrogate probing overall activity of TCE transformation, was also observed, and its transformation results in the production of ethylene oxide, suggesting that some tolueneoxidizing microorganisms stimulated may express a orthomonooxygenase enzyme. Also in situ transformation of TCE was confirmed by greater retardation of TCE than bromide after the stimulation of toluene-oxidizing microorganisms. These results indicate that, in this environment, toluene and oxygen additions stimulated the growth and aerobic cometabolic activity of indigenous microorganisms expressing orthomonooxygenase enzymes. The simple, low-cost field test method presented in this study provides an effective method for conducting rapid field assessments and pilot testing of aerobic cometabolism, which has previously hindered application of this technology to groundwater remediation.