• Title/Summary/Keyword: in situ monitoring

Search Result 482, Processing Time 0.032 seconds

Posttransplantation lymphoproliferative disorder after pediatric solid organ transplantation: experiences of 20 years in a single center

  • Jeong, Hyung Joo;Ahn, Yo Han;Park, Eujin;Choi, Youngrok;Yi, Nam-Joon;Ko, Jae Sung;Min, Sang Il;Ha, Jong Won;Ha, Il-Soo;Cheong, Hae Il;Kang, Hee Gyung
    • Clinical and Experimental Pediatrics
    • /
    • v.60 no.3
    • /
    • pp.86-93
    • /
    • 2017
  • Purpose: To evaluate the clinical spectrum of posttransplantation lymphoproliferative disorder (PTLD) after solid organ transplantation (SOT) in children. Methods: We retrospectively reviewed the medical records of 18 patients with PTLD who underwent liver (LT) or kidney transplantation (KT) between January 1995 and December 2014 in Seoul National University Children's Hospital. Results: Eighteen patients (3.9% of pediatric SOTs; LT:KT, 11:7; male to female, 9:9) were diagnosed as having PTLD over the last 2 decades (4.8% for LT and 2.9% for KT). PTLD usually presented with fever or gastrointestinal symptoms in a median period of 7 months after SOT. Eight cases had malignant lesions, and all the patients except one had evidence of Epstein-Barr virus (EBV) involvement, assessed by using in situ hybridization of tumor tissue or EBV viral load quantitation of blood. Remission was achieved in all patients with reduction of immunosuppression and/or rituximab therapy or chemotherapy, although 1 patient had allograft kidney loss and another died from complications of chemotherapy. The first case of PTLD was encountered after the introduction of tacrolimus for pediatric SOT in 2003. The recent increase in PTLD incidence in KT coincided with modification of clinical practice since 2012 to increase the tacrolimus trough level. Conclusion: While the outcome was favorable in that all patients achieved complete remission, some patients still had allograft loss or mortality. To prevent PTLD and improve its outcome, monitoring for EBV infection is essential, which would lead to appropriate modification of immunosuppression and enhanced surveillance for PTLD.

A Study on the Analysis of Monitoring Settlement Considering the History of the Groundwater Level in the Dredged Landfill Area Affected by Algae (조류의 영향을 받는 준설매립지역에서 지하수위 이력을 고려한 계측침하 분석에 관한 연구)

  • Jang, Ji-Gun;Son, Su-Won;Hong, Seok-Woo
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.7
    • /
    • pp.13-23
    • /
    • 2021
  • If roads, bridges, buildings, etc. are built on the ground with soft clay or organic soil, there may be a lot of problems in geotechnical engineering such as settlement and stability due to the large settlement and lack of bearing capacity. In extreme cases, it may appear due to shear failure or collapse of the constructed structure, so a ground improvement method is indispensable to increase the strength of the ground and to suppress settlement. In this study, the settlement according to each groundwater level condition was analyzed using the measurement results for the groundwater level conditions, one of the important factors in predicting the settlement in dredged and reclaimed ground, and the groundwater level conditions applied to the settlement analysis were proposed by comparing it with settlement generated 5 years after construction. As a result of the analysis, it is judged that it is reasonable to apply the measured groundwater level during construction and the low water ordinary neap tide (L.W.O.N.T) during load application for the groundwater level in the settlement analysis. In addition, in the case of the dredged and reclaimed ground, it is estimated that the water pressure acting on the clay layer is nonlinear, as the result of the observations of the head of water at the observation points above and below the in-situ clay layer were different.

Estimation of Moisture Content in Comminuted Miscanthus based on the Intensity of Reflected Light

  • Cho, Yongjin;Lee, Dong Hoon
    • Journal of Biosystems Engineering
    • /
    • v.40 no.3
    • /
    • pp.296-304
    • /
    • 2015
  • Purpose: The balance between miscanthus production and its cost effectiveness depends greatly on its moisture content during post processing. The objective of this research was to measure the moisture content using a non-destructive and non-contact methodology for in situ applications. Methods: The moisture content of comminuted miscanthus was controlled using a closed chamber, a humidifier, a precision weigher, and a real-time monitoring software developed in this research. A CMOS sensor equipped with $50{\times}$ magnifier lens was used to capture magnified images of the conditioned materials with moisture content level from 5 to 30%. The hypothesis is that when light is incident on the comminuted particles in an inclined manner, higher moisture content results in light being reflected with a higher intensity. Results: A linear regression analysis for an initiative hypothesis based on general histogram analysis yielded insufficient correlations with low significance level (<0.31) for the determination coefficient. A significant relationship (94% confidence level) was determined at level 108 in a reverse accumulative histogram proposed based on a revised hypothesis. A linear regression model with the value at level 108 in the reverse accumulative histogram for a magnified image as the independent variable and the moisture content of comminuted miscanthus as the dependent variable was proposed as the estimation model. The calibrated linear regression model with a slope of 92.054 and an offset of 32.752 yielded 0.94 for the determination coefficient (RMSE = 0.2%). The validation test showed a significant relationship at the 74% confidence level with RMSE 6.4% (n = 36). Conclusions: To compensate the inconsistent significance between calibration and validation, an estimation model robust against various systematic interferences is necessary. The economic efficiency of miscanthus, which is a promising energy resource, can be improved by the real-time measurement of its crucial material properties.

Estimation for Primary Tunnel Lining Loads

  • Kim, Hak-Joon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1998.05a
    • /
    • pp.153-204
    • /
    • 1998
  • Prediction of lining loads due to tunnelling is one of the major issues to be addressed in the design of a tunnel. The objective of this study is to investigate rational and realistic design loads on tunnel linings. factors influencing the lining load are summarized and discussed. The instruments for measuring the lining loads are reviewed and discussed because field measurements are often necessary to verify the design methods. Tunnel construction in the City of Edmonton has been very active for storm and sanitary purposes. Since the early 1970's, the city has also been developing an underground Light Rail Transit system. The load measurements obtained from these tunnels are compared with the results from the existing design methods. However, none of the existing methods are totally satisfactory, Therefore, there is some room for improvement in the prediction of lining loads. The convergence-confinement method is reviewed and applied to a case history of a tunnel in Edmonton. The convergence curves are obtained from 2-D finite element analyses using three different material models and theoretical equations. The limitation of the convergence-confinement method is discussed by comparing these curves with the field measurements. Three-dimensional finite element analyses are performed to gain a better understanding of stress and displacement behaviour near the tunnel face. An improved design method is proposed based on the review of existing design methods and the performance of numerical analyses. A specific method or combination of two different methods is suggested for the estimation of lining loads for different conditions of tunnelling. A method to determine the stress reduction factor is described. Typical values of dimensionless load factors nD/H for tunnels in Edmonton are obtained from parametric analyses. Finally, the loads calculated using the proposed method are compared with field measurements collected from various tunnels in terms of soil types and construction methods to verify the method. The proposed method gives a reasonable approximation of the lining loads. The proposed method is recommended as an approximate guideline for the design of tunnels, but the results should be confirmed by field measurements due to the uncertainties of the ground and lining properties and the construction procedures, This is the reason that in-situ monitoring should be an integral part of the design procedure.

  • PDF

Study on monitoring and prediction for the red tide occurrence in the middle coastal area in the South Sea of Korea II. The relationship between the red tide occurrence and the oceanographic factors (원격탐사를 이용한 한국 남해 중부해역에서의 적조 예찰 연구 II. 적조발생과 해양인자간의 상관성 연구)

  • 윤홍주;남광우;조한근;변혜경
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.4
    • /
    • pp.938-945
    • /
    • 2004
  • On the relationship between the red tide occurrence and the oceanographic factors in the middle coastal area in the South Sea of Korea, the favorable oceanographic conditions for the red tide formation are considered as follows; the calm weather increases sea water temperature in summer and early-fall which the red tide occurs frequently, and the heavy precipitation brings some riverine water to ween: low salinity, high suspended solid, low phosphorus and high nitrogen, respectively. We decided the potential areas in the coastal zones vulnerable to the red tide occurrence based on the limited factors controlling the growth of phytoplankton. By using GIS through the overlap for three subject figures (phosphorus, nitrogen and suspended solids), it was founded that the potential areas are the Yeosu∼Dolsan coast, the Gamak bay, the Namhae coast, the Narodo coast, the Goheung and Deukryang bay. This result has very well coincided to the results of the satellite and in-situ data.

A merging framework for improving field scale root-zone soil moisture measurement with Cosmic-ray neutron probe over Korean Peninsula

  • Nguyen, Hoang Hai;Choi, Minha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.154-154
    • /
    • 2019
  • Characterization of reliable field-scale root-zone soil moisture (RZSM) variability contribute to effective hydro-meterological monitoring. Although a promising cosmic-ray neutron probe (CRNP) holds the pontential for field-scale RZSM measurement, it is often restricted at deeper depths due to the non-unique sensitivity of CRNP-measured fast neutron signal to other hydrogen pools. In this study, a merging framework relied on coupling cosmic-ray soil moisture with a representative additional RZSM, was introduced to scale shallower CRNP effective depth to represent root-zone layer. We tested our proposed framework over a densely vegetated region in South Korea covering a network of one CRNP and nine in-situ point measurements. In particular, cosmic-ray soil moisture and ancillary RZSM retrieved from the most time stable location were considered as input datasets; whereas the remaining point locations were used to generate a reference RZSM product. The errors between these two input datasets and the reference were forecasted by a linear autoregressive model. A linear combination of forecasts was then employed to compute a suitable weight for merging two input products from the predicted errors. The performance of merging framework was evaluated against reference RZSM in comparison to the two original products and a commonly used exponential filter technique. The results of this study showed that merging framework outperformed other products, demonstrating its robustness in improving field-scale RZSM. Moreover, a strong relationship between the quality of input data and the performance merging framework in light of CRNP effective depth variation has been also underlined via the merging framework.

  • PDF

Numerical modelling of Fault Reactivation Experiment at Mont Terri Underground Research Laboratory in Switzerland: DECOVALEX-2019 TASK B (Step 2) (스위스 Mont Terri 지하연구시설 단층 내 유체 주입시험 모델링: 국제공동연구 DECOVALEX-2019 Task B(Step 2))

  • Park, Jung-Wook;Guglielmi, Yves;Graupner, Bastian;Rutqvist, Jonny;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.29 no.3
    • /
    • pp.197-213
    • /
    • 2019
  • We simulated the fault reactivation experiment conducted at 'Main Fault' intersecting the low permeability clay formations of Mont Terri Underground Research Laboratory in Switzerland using TOUGH-FLAC simulator. The fluid flow along a fault was modelled with solid elements and governed by Darcy's law with the cubic law in TOUGH2, whereas the mechanical behavior of a single fault was represented by creating interface elements between two separating rock blocks in FLAC3D. We formulate the hydro-mechanical coupling relation of hydraulic aperture to consider the elastic fracture opening and failure-induced dilation for reproducing the abrupt changes in injection flow rate and monitoring pressure at fracture opening pressure. A parametric study was conducted to examine the effects of in-situ stress condition and fault deformation and strength parameters and to find the optimal parameter set to reproduce the field observations. In the best matching simulation, the fracture opening pressure and variations of injection flow rate and monitoring pressure showed good agreement with field experiment results, which suggests the capability of the numerical model to reasonably capture the fracture opening and propagation process. The model overestimated the fault displacement in shear direction and the range of reactivated zone, which was attributed to the progressive shear failures along the fault at high injection pressure. In the field experiment results, however, fracture tensile opening seems the dominant mechanism affecting the hydraulic aperture increase.

Numerical Analysis on the Performance Evaluation of Cablebolts as Tunnel Supports (터널 지보재로서 케이블볼트의 성능평가에 관한 수치해석적 연구)

  • Park, Yeon-Jun;Park, Joon-Hyoung
    • Tunnel and Underground Space
    • /
    • v.22 no.2
    • /
    • pp.130-143
    • /
    • 2012
  • Cablebolts used to be employed as auxiliary supports where long or high capacity bolts are needed, but become competitive by the improvements in supportability and easiness in handling. Based on the test results obtained from various researches, the performance of the cablebolts was analyzed numerically while varying lengths and fixing conditions. The supporting effecte is assessed by monitoring displacements and stress taken place in shotcrete. When cablebolts are grouted without being tensioned, supporting effect was not as good as that of rockbolts. But, their supportability was good enough to substitute rockbolts if tensioned properly. Post grouting right after tensioning of the cablebolts shows reduction in supportability, but long term stability could be achieved without losing supportability if grouted when the bolt is far enough from the face. Further study is necessary including laboratory and in-situ tests under various conditions to use cablebolts as main support in tunnels.

Development of Electrical Resistivity Survey System for Geotechnical Centrifuge Modeling (원심모형실험을 위한 전기비저항 탐사 시스템 구축)

  • Cho, Hyung-Ik;Bang, Eun-Seok;Yi, Myeong-Jong;Choo, Yun-Wook;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.10
    • /
    • pp.19-31
    • /
    • 2014
  • In order to investigate ground state change visually in physical model during centrifuge testing, electrical resistivity survey was adopted. Commercial resistivity survey equipment verified at various in-situ sites was utilized. The resistivity survey equipment installed in centrifuge facility was remotely controlled through intranet and electrical resistivity images obtained while centrifuge testing was being checked by real-time inversion. To verify the stable operation of the developed resistivity survey system, preliminary tests were conducted. Model ground was uniformly constructed using unsaturated soil and saline water was dropped on the ground surface to simulate contaminant flow situation. During the 10 g centrifuge tests, electrical resistivity was continuously detected and the testing results were compared with those of identically carried out 1 g centrifuge tests. In addition, the electrical resistivity was directly measured immediately after the centrifuge test by open cutting the model. Finally, reliability of electrical resistivity survey in the centrifuge test was verified by comparing those testing results.

A Study on the Measurement for the Nano Scale Film Formation of Ultra Low Aspect Ratio

  • Jang Siyoul;Kong Hyunsang
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.283-288
    • /
    • 2004
  • The measurement of ultra low aspect ratio fluid film thickness is very crucial technique both for the verification of lubrication media characteristics and for the clearance design in many precision components such as MEMS, precision bearings and other slideways. Many technologies are applied to the measurement of ultra low aspect ratio fluid film thickness (i.e. elastohydrodynamic lubrication film thickness). In particular, in-situ optical interferometric method has many advantages in making the actual contact behaviors realized with the experimental apparatus. This measurement method also does the monitoring of the surface defects and fractures happening during the contact behavior, which are delicately influenced by the surface conditions such as load, velocity, lubricant media as well as surface roughness. Careful selection of incident lights greatly enhances the fringe resolutions up to $\~1.0$ nanometer scale with digital image processing technology. In this work, it is found that coaxial aligning trichromatic incident light filtering system developed by the author can provide much finer resolution of ultra low aspect ratio fluid film thickness than monochromatic or dichromatic incident lights, because it has much more spectrums of color components to be discriminated according the variations of film thickness. For the measured interferometric images of ultra low aspect ratio fluid film thickness it is shown how the film thickness is finely digitalized and measured in nanometer scale with digital image processing technology and space layer method. The developed measurement system can make it possible to visualize the contact deformations and possible fractures of contacting surface under the repeated loading condition.

  • PDF