• Title/Summary/Keyword: in situ monitoring

Search Result 482, Processing Time 0.028 seconds

Algorithm Development of a Visibility Monitoring Technique Using Digital Image Analysis

  • Pokhrel, Rajib;Lee, Hee-Kwan
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.1
    • /
    • pp.8-20
    • /
    • 2011
  • Atmospheric visibility is one of the indicators used to evaluate the status of air quality. Based on a conceptual definition of visibility as the maximum distance at which the outline of the selected target can be recognized, an image analysis technique is introduced here and an algorithm is developed for visibility monitoring. Although there are various measurement techniques, ranging from bulk and precise instruments to naked eye observation techniques, each has their own limitations. In this study, a series of image analysis techniques were introduced and examined for in-situ application. An imaging system was built up using a digital camera and was installed on the study sites in Incheon and Seoul separately. Visual range was also monitored by using a dual technology visibility sensor in Incheon and transmissometer in Seoul simultaneously. The Sobel mask filter was applied to detect the edge lines of objects by extracting the high frequency from the digital image. The root mean square (RMS) index of variation among the pixels in the image was substantially correlated with the visual ranges in Incheon and Seoul with correlations of $R^2$=0.88 and $R^2$=0.71, respectively. The regression line equations between the visual range and the RMS index in Incheon and Seoul were VR=$2.36e^{0.46{\times}(RMS)}$ and VR=$3.18e^{0.15{\times}(RMS)}$, respectively. It was also confirmed that the fine particles ($PM_{2.5}$) have more impacts to the impairment of visibility than coarse particles.

Strain Measurement and Failure Detection of Reinforced Concrete Beams Using Fiber Otpic Michelson Sensors (광섬유 마이켈슨 센서에 의한 RC보의 변형률 측정 및 파손의 검출)

  • Kwon, Il-Bum;Huh, Yong-Hak;Park, Phi-Lip;Kim, Dong-Jin;Lee, Dong-Chun;Hong, Sung-Hyuk;Moon, Hahn-Gue
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.3
    • /
    • pp.223-236
    • /
    • 1999
  • The need to monitor and undertake remidial works on large structures has greatly increased in recent years due to the appearance of widespread faults in large structures such as bridges and buildings, etc, of 20 or more years of age. The health condition of structures must be monitored continuously to maintenance the structures. In order to do in-situ monitoring, the sensor is necessary to be embedded in the structures. Fiber optic sensors can be embedded in the structures to get the health information in the structures. The fiber sensor was constructed with $3{\times}3$ fiber couplers to sense the multi-point strains and failure instants. The 4 RC (reinforced concrete) beams were made to 2 of A type, 2 of B type beams. These beams were reinforced by the reinforcing bars, and were tested under the flexural loading. The behavior of the beams was simultaneously measured by the fiber optic sensors, electrical strain gages, and LVDT. The states of the beams were interpreted by these all signals. By these experiments, There were verified that the fiber optic sensors could measure the structural strains and failure instants of the RC beams, The fiber sensors were well operated until the failure of the beams. It was shown that the strains of the reinforcing steel bar can be used to monitor the health condition of the beams through the flexural test of RC beams. On the other words, the results were arrived that the two strains in the reinforcing bar measured at the same point can give the information of the structural health status. Also, the failure instants of beams were well detected from the fiber optic filtered signals.

  • PDF

Monitoring Roadbed Stability to Prevent Cascading Hazards in Daejeon City, South Korea, Using Sentinel-1 SAR Data

  • Manik DAS ADHIKARI;Seung-Bin LEE;Seong-Wuk KIM;Hyeon-Jun KIM;Jeremie TUGANISHURI;Sang-Guk YUM;Ji-Myong KIM
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.102-111
    • /
    • 2024
  • Roadbed stability is paramount in urban areas as it directly affects public safety and city operations. South Korea's major metropolis has experienced 1127 cases of ground subsidence since 2014, affecting subways, roads, railways, and construction sites. Notably, about 40% of these incidents coincide with heavy summer rainfall, while 60% resulted from utility damage, improper backfill, and groundwater fluctuations. Subsequently, roadbed instability leads to a range of cascading hazards, including sinkholes and road failures, endangering public safety and the economy. Therefore, continuous monitoring of roadbed stability and implementing proactive measures are essential for a resilient transportation infrastructure. However, terrestrial in-situ observations like GPS provide accurate surface's displacement with high temporal accuracy but limited spatial resolution. To address this issue, we used the InSAR permanent scatterer (PSInSAR) technique to process 35 Sentinel-1 SLC datasets acquired between 2017 and 2022 to monitor and prevent cascading hazards in Daejeon City, South Korea. The results revealed an average subsidence rate of -0.88mm/year with a maximum of -7.73 mm/year. Notably, the southern part of the city exhibited significant roadbed instability, with an average and maximum cumulative subsidence of -5.13 mm and -44.95 mm, respectively. The deformation data was then integrated with road geometry to develop a vulnerability map of the city, highlighting the pronounced roadbed deformation in the southern region. Time-series subsidence variations correlated with groundwater fluctuations data from 2017 to 2022, showing a decline in groundwater levels from 4.63m to 9.9m in the southern region. Furthermore, a comparison between subsidence rates and effective shear wave velocity (Vs30) revealed that most subsidence events were associated with Vs30 values below 420 m/sec, indicating a clear lithological influence on the spatial distribution of roadbed instability. Thus, the integrated geotechnical and hydrogeological data with PSInSAR monitoring can better understand the processes responsible for roadbed instability in areas with small-scale variations.

Releasing a Genetically Engineered Microorganism for Bioremediation

  • Sayler, Gary;Burlage, Robert;Cox, Chris;Nivens, David;Ripp, Steven;Ahn, Yeonghee;Easter, Jim;Wrner, Claudia;Jarrell, John
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.153-162
    • /
    • 2000
  • A field study was performed to test effectiveness of a bloluminescent genetically engineered microorganism (GEM) for bioremediation process monitoring and control. The study employed Pseudomonas fluorescens HK44 that was the first strain approved for field application in the U.S. for bioremediation purposes. HK44 contains lux gene fused within a naphthalene degradative pathway, allowing this GEM to bioluminesce as it degrades naphthalene as well as substituted naphthalenes and other polycyclic aromatic hydrocarbons (PAHs) , Results showed that HK44 was maintained in both PAH-contarninated and uncontaminated soils even 660 days after inoculation. HK44 was able to produce bioluminescence in response to PAHs in soil. Although effectiveness of chemical remediation was not assessed due to heterogeneous distribution of contaminants, decreased concentration of naphthalene was shown in the soils, Taken together, HK44 was useful for in situ bioremediation process monitoring and control. This work is so far the only field release of a GEM for bioremediation purposes.

  • PDF

Development and Calibration of 3-Component Vibration Transducer (3방향 진동감지기의 제작 및 검증)

  • Kim, Dong-Su;Lee, Jin-Seon;Jo, Seong-Ho
    • Geotechnical Engineering
    • /
    • v.13 no.4
    • /
    • pp.121-134
    • /
    • 1997
  • Vibrations induced by traffic loading and construction activities are extremely important due to their potential to cause damage to adjacent structures and toy complaints to the neighbors. Vibration induced damage to the built environment may be caused by the direct transmission of vibrations as well as by the, vibration induced differential settlement. In order to effectively control the vibration related problems, the accurate in-situ vibration monitoring is essential. In this paper, a calibration technique of a geophone which is widely used in practice was described. Once the frequency characteristics of individual geophones were calibrated, the 3fomponent geophone was developed for the in-depth vibration measurement, and the dot ailed calibration and application techniques of the 3fomponent geophone were described. Vibrations caused by blasting, train loading, and pile driving were measured and the applicability of the 3fomponent geophone was assessed.

  • PDF

Evaluation of Creep Reliability of Powder Metallurgy and Cast-type Ni-based Superalloy by Using Ultrasonic Wave (분말야금 및 주조형 니켈기 초내열합금 크리프 신뢰성의 초음파 모니터링)

  • Choi, Chan-Yang;Song, Jin-Hun;Oh, Se-Ung;Kim, Chung-Seok;Kwun, Sook-In;Oh, Sung-Tag;Hyun, Chang-Yong;Byeon, Jai-Won
    • Journal of Powder Materials
    • /
    • v.19 no.3
    • /
    • pp.215-219
    • /
    • 2012
  • An attempt was made to evaluate creep reliability of two commercial Ni-based superalloys by using ultrasonic wave. The materials include fine-grained PM alloy fabricated by mechanical alloying and subsequent hot isostatic pressing, and IN738LC cast alloy with a grain size of a few cm. Microstructural parameters (fraction of creep cavity and size of ${\gamma}^{\prime}$ precipitates) and ultrasonic parameters (velocity, attenuation) were measured to try to find relationships between them. Ultrasonic velocity decreased with creep cavity formation in PM alloy. On the other hand, no distinct changing trend of ultrasonic velocity was observed for IN738LC alloy. Ultrasonic attenuation was found to have a linear correlation with the size of ${\gamma}^{\prime}$ precipitates and was suggested as a potential parameter for monitoring creep reliability of IN738LC alloy.

Monitoring the failure mechanisms of a reinforced concrete beam strengthened by textile reinforced cement using acoustic emission and digital image correlation

  • Aggelis, Dimitrios G.;Verbruggen, Svetlana;Tsangouri, Eleni;Tysmans, Tine;Van Hemelrijck, Danny
    • Smart Structures and Systems
    • /
    • v.17 no.1
    • /
    • pp.91-105
    • /
    • 2016
  • One of the most commonly used techniques to strengthen steel reinforced concrete structures is the application of externally bonded patches in the form of carbon fiber reinforced polymers (CFRP) or recently, textile reinforced cements (TRC). These external patches undertake the tensile stress of bending constraining concrete cracking. Development of full-field inspection methodologies for fracture monitoring are important since the reinforcing layers are not transparent, hindering visual observation of the material condition underneath. In the present study acoustic emission (AE) and digital image correlation (DIC) are applied during four-point bending tests of large beams to follow the damage accumulation. AE helps to determine the onset of fracture as well as the different damage mechanisms through the registered shifts in AE rate, location of active sources and change in waveform parameters. The effect of wave propagation distance, which in large components and in-situ can well mask the original information as emitted by the fracture incidents is also discussed. Simultaneously, crucial information is supplied by DIC concerning the moments of stress release of the patches due to debonding, benchmarking the trends monitored by AE. From the point of view of mechanics, conclusions on the reinforcing contribution of the different repair methodologies are also drawn.

Molecular probe for identification of cysts of resting cyst of PSP-producer Alexandrium tamarense (Dinophyceae) (분자생물학적 방법을 이용하여 마비성 패류 독소를 생산하는 알렉산드륨 타마렌스 시스트 탐색)

  • Cho, Eun-Seob
    • Journal of Life Science
    • /
    • v.13 no.2
    • /
    • pp.163-167
    • /
    • 2003
  • Identification of species within the toxin-producing genus Alexandrium is vital for biotoxin monitoring and mitigation decisions regarding shellfish industry. In particular, the discrimination of resting cysts of only A. tamarense from that of Alexandrium spp. is considerable important to fundamentally monitor and predict this species before vegetative cells occur in the nature. Fluorescent cTAM-F1 DNA probe was responsible to not only binding the activity of the vegetative cells in A. tamarense, but also to the resting cysts, which was treated with methanol after fixation and stained by primuline on the surface The location of fluorescence in cultured vegetative cells and resting cysts was almost at tile bottom of the nucleus. The optimal incubation temperature and time using in situ hybridization were 50-$54^{\circ}C$ and 40-60 min, respectively, to penetrate the DNA probe into cell.

System identification of soil behavior from vertical seismic arrays

  • Glaser, Steven D.;Ni, Sheng-Huoo;Ko, Chi-Chih
    • Smart Structures and Systems
    • /
    • v.4 no.6
    • /
    • pp.727-740
    • /
    • 2008
  • A down hole vertical seismic array is a sequence of instruments installed at various depths in the earth to record the ground motion at multiple points during an earthquake. Numerous studies demonstrate the unique utility of vertical seismic arrays for studying in situ site response and soil behavior. Examples are given of analyses made at two sites to show the value of data from vertical seismic arrays. The sites examined are the Lotung, Taiwan SMART1 array and a new site installed at Jingliao, Taiwan. Details of the installation of the Jingliao array are given. ARX models are theoretically the correct process models for vertical wave propagation in the layered earth, and are used to linearly map deeper sensor input signals to shallower sensor output signals. An example of Event 16 at the Lotung array is given. This same data, when examined in detail with a Bayesian inference model, can also be explained by nonlinear filters yielding commonly accepted soil degradation curves. Results from applying an ARMAX model to data from the Jingliao vertical seismic array are presented. Estimates of inter-transducer soil increment resonant frequency, shear modulus, and damping ratio are presented. The shear modulus varied from 50 to 150 MPa, and damping ratio between 8% and 15%. A new hardware monitoring system - TerraScope - is an affordable 4-D down-hole seismic monitoring system based on independent, microprocessor-controlled sensor Pods. The Pods are nominally 50 mm in diameter, and about 120 mm long. An internal 16-bit micro-controller oversees all aspects of instrumentation, eight programmable gain amplifiers, and local signal storage.

Efficient Outlier Detection of the Water Temperature Monitoring Data (수온 관측 자료의 효율적인 이상 자료 탐지)

  • Cho, Hongyeon;Jeong, Shin Taek;Ko, Dong Hui;Son, Kyeong-Pyo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.5
    • /
    • pp.285-291
    • /
    • 2014
  • The statistical information of the coastal water temperature monitoring data can be biased because of outliers and missing intervals. Though a number of outlier detection methods have been developed, their applications are very limited to the in-situ monitoring data because of the assumptions of the a prior information of the outliers and no-missing condition, and the excessive computational time for some methods. In this study, the practical robust method is developed that can be efficiently and effectively detect the outliers in case of the big-data. This model is composed of these two parts, one part is the construction part of the approximate components of the monitoring data using the robust smoothing and data re-sampling method, and the other part is the main iterative outlier detection part using the detailed components of the data estimated by the approximate components. This model is tested using the two-years 5-minute interval water temperature data in Lake Saemangeum. It can be estimated that the outlier proportion of the data is about 1.6-3.7%. It shows that most of the outliers in the data are detected and removed with satisfaction by the model. In order to effectively detect and remove the outliers, the outlier detection using the long-span smoothing should be applied earlier than that using the short-span smoothing.