• Title/Summary/Keyword: in situ monitoring

Search Result 482, Processing Time 0.029 seconds

Study on the Real-Time Leak Monitoring Technique for Power Plant Valves (발전용 밸브누설 실시간 감시기술 연구)

  • Lee, S.G.
    • Journal of Power System Engineering
    • /
    • v.11 no.1
    • /
    • pp.39-44
    • /
    • 2007
  • The purpose of this study is to verify availability of the acoustic emission in-situ monitoring method to the internal leak and operating conditions of the major valves at nuclear power plants. In this study, acoustic emission tests are performed when the pressurized temperature water and steam flowed through glove valve(main steam dump valve) and check valve(main steam outlet pump check valve) on the normal size of 12 and 18". The valve internal leak monitoring system for practical field was designed. The acoustic emission method was applied to the valves at the site, and the background noise was measured for the abnormal plant condition. To improve the reliability, a judgment of leak on the system was used various factors which are AE parameters, trend analysis, frequency analysis, voltage analysis and amplitude analysis of acoustic signal emitted from the valve operating condition internal leak.

  • PDF

Performance monitoring of offshore PHC pipe pile using BOFDA-based distributed fiber optic sensing system

  • Zheng, Xing;Shi, Bin;Zhu, Hong-Hu;Zhang, Cheng-Cheng;Wang, Xing;Sun, Meng-Ya
    • Geomechanics and Engineering
    • /
    • v.24 no.4
    • /
    • pp.337-348
    • /
    • 2021
  • Brillouin Optical Frequency Domain Analysis (BOFDA) is a distributed fiber optic sensing (DFOS) technique that has unique advantages for performance monitoring of piles. However, the complicated production process and harsh operating environment of offshore PHC pipe piles make it difficult to apply this method to pile load testing. In this study, sensing cables were successfully pre-installed into an offshore PHC pipe pile directly for the first time and the BOFDA technique was used for in-situ monitoring of the pile under axial load. High-resolution strain and internal force distributions along the pile were obtained by the BOFDA sensing system. A finite element analysis incorporating the Degradation and Hardening Hyperbolic Model (DHHM) was carried out to evaluate and predict the performance of the pile, which provides an improved insight into the offshore pile-soil interaction mechanism.

Tribological Characteristics of Conditioning Methods on Polishing Pad (컨디셔닝 방식에 따른 패드의 트라이볼로지적 특성)

  • Lee, Hyun-Seop;Park, Boum-Young;Seo, Heon-Deok;Jeong, Hae-Do
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.358-359
    • /
    • 2005
  • Chemical mechanical polishing(CMP) process depends on a variety of variables. Especially, surface roughness of pad plays a key role in material removal in CMP in terms of transportation ability of pores and real contact area. The surface roughness is deteriorated with polishing time by applied pressure and relative velocity. In this reason, diamond conditioner has been used to maintain the roughness on the pad. The authors try to investigate the correlation between pad roughness and frictional behavior by comparing ex-situ conditioning with in-situ conditioning.

  • PDF

Changes in Availability of Toxic Trace Elements (TTEs) and Its Effects on Soil Enzyme Activities with Amendment Addition

  • Lee, Sang-Hwan;Park, Misun;Kim, Min-Suk
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.2
    • /
    • pp.134-144
    • /
    • 2020
  • In-situ stabilization is a remediation method using amendments to reduce contaminant availability in contaminated soil. We tested the effects of two amendments (furnace slag and red mud) on the availability of toxic trace elements (TTEs) and soil enzyme activities (dehydrogenase, phosphatase, and urease). The application of amendments significantly decreased the availability of TTEs in soil (p < 0.05). The decreased availability of TTE content in soils was accompanied by increased soil enzyme activities. We found significant negative relationships between the TTE content assessed using Ca(NO3)2-, TCLP, and PBET extraction methods and soil enzyme activities (p < 0.01). Soil enzyme activities responded sensitively to changes in the soil environment (pH, EC, and availability of TTEs). It could be concluded that soil enzyme activities could be used as bioindicators or ecological indicators for soil quality and health in environmental soil monitoring owing to their high sensitivity to changes in soil.

Materials Characterization Using A Novel Simultaneous Near-Infrared/X-ray Diffraction Instrument

  • Yeboah, S.Agyare;Blanton, Thomas;Switalski, Steve;Schuler, Julie;Analytical, Craig Barnes
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1288-1288
    • /
    • 2001
  • X-ray powder diffraction (XRD) is utilized for determination of polymorphism in crystalline organic materials. Though convenient to use in a laboratory setting, XRD is not easily adapted to in situ monitoring of synthetic chemical production applications. Near-Infrared spectroscopy (NIR) can be adapted to in situ manufacturing schemes by use of a source/detector probe. Conversely, NIR is unable to conclusively define the existence of polymorphism in crystalline materials. By combining the two techniques, a novel simultaneous NIR/XRD instrument has been developed. During material's analysis, results from XRD allow for defining the polymorphic phase present, and NIR data are collected as a fingerprint for each of the observed polymorphs. These NIR fingerprints will allow for the development of a library, which can be referenced during the use of a NIR probe in manufacturing settings.

  • PDF

An analysis of rainfall infiltration characteristics on a natural slope from in-situ monitoring data (현장 계측을 통한 자연사면에서의 강우 침투 특성 분석)

  • Kim, Woong-Ku;Chang, Pyoung-Wuck;Cha, Kyung-Seob
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.375-380
    • /
    • 2005
  • In Korea, most landslides are occurred during the rainy season from June to September and have a shallow failure plane parallel to the slope. For these types of rainfall-induced failures, the most important factors triggering slope unstability is not the increase of pore water pressure but the decrease of the matric suction of unsaturated soils by rainfall infiltration. So it is essential to landslide hazard assessment that defines the characteristics of infiltration in natural slopes. In this study, field measurements have been carried out in order to monitor in-situ volumetric water contents and ground water table, at several depths and locations on a natural slope. The results show that rainfall infiltration is correlated with antecedent water contents, rainfall intensity and total rainfall. The ground water table was varied sensitively by every rainfall event.

  • PDF

Tubular Type Direct Methanol Fuel Cell for in situ NMR Diagnosis (In Situ NMR 진단용 원통형 직접 메탄올 연료전지)

  • Joh, Han-Ik;Um, Myung-Sup;Han, Kee-Sung;Han, Oc-Hee;Ha, Heung-Yong;Kim, Soo-Kil
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.4
    • /
    • pp.329-334
    • /
    • 2009
  • This study is to develop a fuel cell system applicable to an in situ NMR (Nuclear magnetic resonance) diagnosis. The in situ NMR can be used in real time monitoring of various reactions occurring in the fuel cell, such as oxidation of fuel, reduction of oxygen, transport phenomena, and component degradation. The fuel cell for this purpose is, however, to be operated in a specifically designed tubular shape toroid cavity detector (TCD), which constrains the fuel cell to have a tubular shape. This may cause difficulties in effective mass transport of reactants/products and uniform distribution of assembly pressure. Therefore, a new flow field designed in a particular way is necessary to enhance the mass transport in the tubular fuel cell. In this study, a tubular-shaped close-type flow field made of non-magnetic material is developed. With this flow field, oxygen is effectively delivered to the cathode surface and the produced water is readily removed from the membrane-electrode assembly to prevent flooding. The resulting DMFC (direct methanol fuel cell) outperforms the open-type flow field and exhibits $36\;mW/cm^2$ even at room temperature.

CONDUCTIVITIES OF SEA-BOTTOM SEDIMENTS

  • HoWoongShon
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.2
    • /
    • pp.79-87
    • /
    • 2003
  • An in-situ four-electrode contact resistivity probe system was designed, and field-tested in submarine sediments. Seismic survey was also performed to support and compare the results of electric survey. The probe was designed to be driven to selected depths below the seafloor using a Vibracore system. The four insulated electrodes were, spaced equidistant across the wedge, were extended beyond the probe tip to minimize effects of sediment disturbance by the wedge insertion. In-situ measurements of resistivity were recorded on board by precision electronic equipment consisting of signal generators and processors, and by temperature- monitoring systems. Overall limits of uncertainty at respective depths below the seafloor are up to ±10% of the measured values. Best estimates of conductivity are considered to be ±3 percent of the reported values. Resistivity measurements were made at six sites in carbonate sediments to a maximum depth of penetration of about 5 m. Average values of conductivity range between 0.88 and 1.21 mho/m. The results show the seabed is composed of alternating layers of relatively high-conductivity material (0.8 to 1.4 mho/m) in thicknesses of more or less one meter and layers about 30 cm thick having relatively low conductivities (0.4 to 0.8 mho/m).

  • PDF

Deep-learning based In-situ Monitoring and Prediction System for the Organic Light Emitting Diode

  • Park, Il-Hoo;Cho, Hyeran;Kim, Gyu-Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.126-129
    • /
    • 2020
  • We introduce a lifetime assessment technique using deep learning algorithm with complex electrical parameters such as resistivity, permittivity, impedance parameters as integrated indicators for predicting the degradation of the organic molecules. The evaluation system consists of fully automated in-situ measurement system and multiple layer perceptron learning system with five hidden layers and 1011 perceptra in each layer. Prediction accuracies are calculated and compared depending on the physical feature, learning hyperparameters. 62.5% of full time-series data are used for training and its prediction accuracy is estimated as r-square value of 0.99. Remaining 37.5% of the data are used for testing with prediction accuracy of 0.95. With k-fold cross-validation, the stability to the instantaneous changes in the measured data is also improved.

Real time crack detection using mountable comparative vacuum monitoring sensors

  • Roach, D.
    • Smart Structures and Systems
    • /
    • v.5 no.4
    • /
    • pp.317-328
    • /
    • 2009
  • Current maintenance operations and integrity checks on a wide array of structures require personnel entry into normally-inaccessible or hazardous areas to perform necessary nondestructive inspections. To gain access for these inspections, structure must be disassembled and removed or personnel must be transported to remote locations. The use of in-situ sensors, coupled with remote interrogation, can be employed to overcome a myriad of inspection impediments stemming from accessibility limitations, complex geometries, the location and depth of hidden damage, and the isolated location of the structure. Furthermore, prevention of unexpected flaw growth and structural failure could be improved if on-board health monitoring systems were used to more regularly assess structural integrity. A research program has been completed to develop and validate Comparative Vacuum Monitoring (CVM) Sensors for surface crack detection. Statistical methods using one-sided tolerance intervals were employed to derive Probability of Detection (POD) levels for a wide array of application scenarios. Multi-year field tests were also conducted to study the deployment and long-term operation of CVM sensors on aircraft. This paper presents the quantitative crack detection capabilities of the CVM sensor, its performance in actual flight environments, and the prospects for structural health monitoring applications on aircraft and other civil structures.