DOI QR코드

DOI QR Code

Performance monitoring of offshore PHC pipe pile using BOFDA-based distributed fiber optic sensing system

  • Zheng, Xing (School of Earth Sciences and Engineering, Nanjing University) ;
  • Shi, Bin (School of Earth Sciences and Engineering, Nanjing University) ;
  • Zhu, Hong-Hu (School of Earth Sciences and Engineering, Nanjing University) ;
  • Zhang, Cheng-Cheng (School of Earth Sciences and Engineering, Nanjing University) ;
  • Wang, Xing (Nanjing University High-Tech Institute at Suzhou) ;
  • Sun, Meng-Ya (School of Earth Sciences and Engineering, Nanjing University)
  • Received : 2020.07.21
  • Accepted : 2021.01.29
  • Published : 2021.02.25

Abstract

Brillouin Optical Frequency Domain Analysis (BOFDA) is a distributed fiber optic sensing (DFOS) technique that has unique advantages for performance monitoring of piles. However, the complicated production process and harsh operating environment of offshore PHC pipe piles make it difficult to apply this method to pile load testing. In this study, sensing cables were successfully pre-installed into an offshore PHC pipe pile directly for the first time and the BOFDA technique was used for in-situ monitoring of the pile under axial load. High-resolution strain and internal force distributions along the pile were obtained by the BOFDA sensing system. A finite element analysis incorporating the Degradation and Hardening Hyperbolic Model (DHHM) was carried out to evaluate and predict the performance of the pile, which provides an improved insight into the offshore pile-soil interaction mechanism.

Keywords

References

  1. Agrawal, G.P. (2001), Nonlinear Fiber Optics in Nonlinear Science at the Dawn of the 21st Century, Springer, Berlin, Heidelberg, Germany.
  2. API RP 2A-WSD (2002), Planning, designing and constructing fixed offshore platforms-Working stress design, American Petroleum Institute, Washington, D.C., U.S.A.
  3. Baldwin, C., Poloso, T., Chen, P. C., Niemczuk, J. B. and Ealy, C. (2001), "Structural monitoring of composite marine piles using fiber optic sensors", Proceedings of the SPIE International Society for Optical Engineering, Newport Beach, California, U.S.A., March
  4. Bao, X. and Chen, L. (2012), "Recent progress in distributed fiber optic sensors", Sensors, 12(12), 8601-8639. https://doi.org/10.3390/s120708601.
  5. Bernini, R., Minardo, A. and Zeni, L. (2011), "Distributed sensing at centimeter-scale spatial resolution by BOFDA: Measurements and signal processing". IEEE Photonics J., 4(1), 48-56. https://doi.org/10.1109/JPHOT.2011.2179024.
  6. Bohn C., Santos A.L.D. and Frank R. (2016), "Development of axial pile load transfer curves based on instrumented load tests", J. Geotech. Geoenviron. Eng., 143(1), 04016081. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001579.
  7. Bourne-Webb, P.J., Amatya, B., Soga, K., Amis, T., Davidson, C. and Payne, P. (2009), "Energy pile test at lambeth college, London: Geotechnical and thermodynamic aspects of pile response to heat cycles", Geotechnique, 59(3), 237-248. https://doi.org/10.1680/geot.2009.59.3.237.
  8. Chalmovsky, J. and Mica, L. (2020), "Prediction of the load-displacement response of ground anchors via the load-transfer method", Geomech. Eng., 20(4), 359-370. https://doi.org/10.12989/gae.2020.20.4.359.
  9. Chong, S.H., Shin, H.S. and Cho, G.C. (2019), "Numerical analysis of offshore monopile during repetitive lateral loading", Geomech. Eng., 19(1), 79-81 https://doi.org/10.12989/gae.2019.19.1.079.
  10. Fellenius, B.H., Harris, D.E. and Anderson, D.G. (2004), "Static loading test on a 45 m long pipe pile in sandpoint, idaho", Can. Geotech. J., 41(4), 613-628. https://doi.org/10.1139/t04-012.
  11. Feng, S.J., Lu, S.F. and Shi, Z.M. (2015), "Field investigations of two super-long steel pipe piles in offshore areas", Mar. Georesour. Geotec., 34(6), 559-570. https://doi.org/10.1080/1064119X.2015.1038760.
  12. Gao, L., Han, C., Xu, Z., Jin, Y. and Yan, J. (2019), "Experimental study on deformation monitoring of bored pile based on BOTDR", Appl. Sci,, 9(12), 2435. https://doi.org/10.3390/app9122435.
  13. Gao, L., Ji, B.Q., Kong, G.Q., Huang, X., Li, M.K. and Mahfouz, A.H. (2015), "Distributed measurement of temperature for PCC energy pile using BOFDA", J. Sens., 1-6. https://doi.org/10.1155/2015/610473.
  14. Garcus, D. and Gogolla, T. (1997), "Brillouin optical-fiber frequency-domain analysis for distributed temperature and strain measurements", J. Lightwave Technol., 15(4), 654-662. https://doi.org/10.1109/50.566687.
  15. Hong, C.Y., Zhang, Y.F. and Liu, L.Q. (2016), "Application of distributed optical fiber sensor for monitoring the mechanical performance of a driven pile", Measurement, 88, 186-193. https://doi.org/10.1016/j.measurement.2016.03.052.
  16. Huang, L.J., Lin, Y., Cai, J. and Zhou, W.Q. (2008), "Dynamic and static comparative analyses of settlements of overlength PHC pipe piles", Rock Soil Mech., 29(2), 507-511 (in Chinese). https://doi.org/10.3969/j.issn.1000-7598.2008.02.041
  17. JGJ106-2014 (2014), Technical code for testing of building foundation piles, Ministry of Construction of the People's Republic of China, Beijing, China.
  18. JTS167-4-2012 (2012), Chinese Code for Pile Foundation of Harbor Engineering, Ministry of Construction of the People's Republic of China, Beijing, China.
  19. Kechavarzi, C., Pelecanos, L., Battista, N.D. and Soga, K. (2019), "Distributed fibre optic sensing for monitoring reinforced concrete piles", Geotech. Eng. J. SEAGS AGSSEA, 50(2), 43-51.
  20. Kechavarzi, C., Soga, K., Battista, N.D., Pelecanos, L. and Mair, R.J. (2016), Distributed Fibre Optic Strain Sensing for Monitoring Civil Infrastructure, Thomas Telford, London, U.K.
  21. Kou, H. L., Guo, W. and Zhang, M.Y. (2016), "Field study of setup effect in open-ended phc pipe piles", Mar. Georesour. Geotechnol., 35(2), 208-215. https://doi.org/10.1080/1064119X.2015.1133742.
  22. Kou, H.L., Chu, J., Guo, W. and Zhang, M.Y. (2016), "Field study of residual forces developed in pre-stressed high-strength concrete (PHC) pipe piles", Can. Geotech. J., 53(4), 696-707. https://doi.org/10.1139/cgj-2015-0177.
  23. Lehane, B.M. and Jardine, R.J. (1994), "Displacement-pile behaviour in a soft marine clay", Can. Geotech. J., 31(2), 181-191. https://doi.org/10.1139/t94-024.
  24. Li, G.W., Pei, H.F., Yin, J.H., Lu, X.C. and Teng, J. (2014), "Monitoring and analysis of PHC pipe piles under hydraulic jacking using FBG sensing technology", Measurement, 49(1), 358-367. https://doi.org/10.1016/j.measurement.2013.11.046.
  25. Liu, B., Zhang, D. and Xi, P. (2017), "Mechanical behaviors of SD and CFA piles using BOTDA-based fiber optic sensor system: A comparative field test study", Measurement, 104, 253-262. https://doi.org/10.1016/j.measurement.2017.03.038.
  26. Lu, Y., Shi, B., Wei, G.Q., Chen, S.E. and Zhang, D. (2012), "Application of a distributed optical fiber sensing technique in monitoring the stress of precast piles", Smart Mater. Struct., 21(11), 115011. https://doi.org/10.1088/0964-1726/21/11/115011.
  27. Moffat, R.A., Beltran, J.F. and Herrera, R. (2015), "Applications of BOTDR fiber optics to the monitoring of underground structures", Geomech. Eng., 9(3), 397-414. https://doi.org/10.12989/gae.2015.9.3.397.
  28. Mohamad, H., Soga, K. and Amatya, B. (2014), "Thermal strain sensing of concrete piles using brillouin optical time domain reflectometry", Geotech. Test. J., 37(2), 20120176. https://doi.org/10.1520/GTJ20120176.
  29. Nikles, M. and Thevenaz, L. (1997), "Brillouin gain spectrum characterization in single-mode optical fibers", J. Lightwave Technol., 15(10), 1842-1851. https://doi.org/10.1109/50.633570.
  30. Nils, N. and Stefan, V.D.M. (2019), "Distributed brillouin sensing for geotechnical infrastructure: Capabilities and challenges", Geotech. Eng. J. SEAGS AGSSEA, 50(2), 8-12.
  31. Nils, N., Aleksander, W., Katerina, K. and Elke, T. (2009), "A distributed fiber-optic sensing system for monitoring of large geotechnical structures", Proceedings of the 4th International Conference on Structural Health Monitoring of Intelligent Infrastructure, Zurich, Switzerland, June.
  32. Pelecanos, L. and Soga, K. (2018b), "Development of loadtransfer curves for axially-loaded piles using fibre-optic strain data, finite element analysis and optimisation", Proceedings of the 9th European Conference on Numerical Methods in Geotechnical Engineering, Porto, Portugal, June.
  33. Pelecanos, L., Soga, K., Chunge, M.P., Ouyang, Y., Kwan, V., Kechavarzi, C. and Nicholson, D. (2017), "Distributed fibre-optic monitoring of an Osterberg-cell pile test in London", Geotech. Lett., 7(2), 152-160. https://doi.org/10.1680/jgele.16.00081.
  34. Pelecanos, L., Soga, K., Elshafie, M.Z.E.B., Battista, N.D., Kechavarzi, C. and Gue, C.Y., Ouyang, Y. and Seo, H.J. (2018a), "Distributed fiber optic sensing of axially loaded bored piles", J. Geotech. Geoenviron. Eng., 144(3), 04017122.1-04017122.16. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001843.
  35. Rui, Y., Kechavarzi, C., O'Leary, F., Barker, C., Nicholson, D. and Soga, K. (2017), "Integrity testing of pile cover using distributed fibre optic sensing", Sensors, 17(12), 2949. https://doi.org/10.3390/s17122949.
  36. Seed H.B. and Reese L.C. (1957), "The action of soft clay along friction piles", Trans. Am. Soc. Civ. Eng., 122, 731-754. https://doi.org/10.1061/TACEAT.0007501
  37. Seo, H., Prezzi, M. and Salgado, R. (2013), "Instrumented static load test on rock-socketed micropile", J. Geotech. Geoenviron. Eng., 139(12), 2037-2047. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000946.
  38. Seo, H.J. and Pelecanos, L. (2018), "Finite element analysis of soil-structure interaction in soil anchor pull-out tests", Proceedings of the 9th European Conference on Numerical Methods in Geotechnical Engineering, Porto, Portugal, June.
  39. Shi B., Zhang D. and Zhu H.H. (2019), Distributed Fiber Optic Sensing for Geoengineering Monitoring, Science Press, Beijing, China.
  40. Sun, Y. J., Zhang, D., Shi, B., Tong, H.J. and Wang, X. (2014), "Distributed acquisition, characterization and process analysis of multi-field information in slopes", Eng. Geol., 182, 49-62. https://doi.org/10.1016/j.enggeo.2014.08.025.
  41. Wang, X., Shi, B., Wei, G., Chen, S.E., Zhu, H. and Wang, T. (2017), "Monitoring the behavior of segment joints in a shield tunnel using distributed fiber optic sensors", Struct. Control Health Monit., e2056. https://doi.org/10.1002/stc.2056.
  42. Wolfgang, R., And, H. and Krebber, K. (2011), "Fiber-optic sensor applications in civil and geotechnical engineering", Photonic Sensors, 1(3), 268-280. https://doi.org/10.1007/s13320-011-0011-x.
  43. Wu J.H, Jiang H.T., Su J.W., Shi B., Jiang Y.H. and Gu K. (2015), "Application of distributed fiber optic sensing technique in land subsidence monitoring", J. Civil Struct. Health Monit., 5(5), 587-597. https://doi.org/10.1007/s13349-015-0133-8.
  44. Xu, D. S., Xu, X. Y., Li, W. and Fatahi, B. (2020), "Field experiments on laterally loaded piles for an offshore wind farm", Mar. Struct., 69, 102684. https://doi.org/10.1016/j.marstruc.2019.102684.
  45. Zhang, C.C., Shi, B., Gu, K., Liu, S.P., Wu, J.H. and Zhang, S., Zhang L., Jiang H.T. and Wei G.Q. (2018a), "Vertically distributed sensing of deformation using fiber optic sensing". Geophys. Res. Lett., 45, 11732-11741. https://doi.org/10.1029/2018GL080428.
  46. Zhang, C.C., Zhu, H.H., Liu, S.P., Shi, B. and Zhang, D. (2018b), "A kinematic method for calculating shear displacements of landslides using distributed fiber optic strain measurements", Eng. Geol., 234, 83-96. https://doi.org/10.1016/j.enggeo.2018.01.002.
  47. Zhang, H. and Wu, Z. (2008), "Performance evaluation of BOTDR-based distributed fiber optic sensors for crack monitoring", Struct. Health Monit., 7(2), 143-156. https://doi.org/10.1177/1475921708089745.
  48. Zhang, L., Shi, B., Zhu, H. Yu, X.B., Han, H. and Fan, X. (2021), "PSO-SVM-based deep displacement prediction of Majiagou landslide considering the deformation hysteresis effect", Landslides, 18(1), 179-193. https://doi.org/10.1007/s10346-020-01426-2.
  49. Zhang, W., Xiao, R., Shi, B., Zhu, H.H. and Sun, Y.J. (2019), "Forecasting slope deformation field using correlated grey model updated with time correction factor and background value optimization", Eng. Geol., 260, 105215. https://doi.org/10.1016/j.enggeo.2019.105215.
  50. Zhu, H.H., Ho, A.N.L., Yin, J.H., Sun, H.W., Pei, H.F. and Hong, C.Y. (2012), "An optical fibre monitoring system for evaluating the performance of a soil nailed slope", Smart. Struct. Syst., 9(5), 393-410. https://doi.org/10.12989/sss.2012.9.5.393.