• 제목/요약/키워드: in silico molecular docking

검색결과 66건 처리시간 0.027초

Plant Phenolics Ferulic Acid and P-Coumaric Acid Inhibit Colorectal Cancer Cell Proliferation through EGFR Down-Regulation

  • Roy, Nabarun;Narayanankutty, Arunaksharan;Nazeem, PA;Valsalan, Ravisankar;Babu, TD;Mathew, Deepu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권8호
    • /
    • pp.4019-4023
    • /
    • 2016
  • Background: Colorectal cancer (CRC) or bowel cancer is one of the most important cancer diseases, needing serious attention. The cell surface receptor gene human epidermal growth factor receptor (EGFR) may have an important role in provoking CRC. In this pharmaceutical era, it is always attempted to identify plant-based drugs for cancer, which will have less side effects for human body, unlike the chemically synthesized marketed drugs having serious side effects. So, in this study the authors tried to assess the activity of two important plant compounds, ferulic acid (FA) and p-coumaric acid (pCA), on CRC. Materials and Methods: FA and pCA were tested for their cytotoxic effects on the human CRC cell line HCT 15 and also checked for the level of gene expression of EGFR by real time PCR analysis. Positive results were confirmed by in silico molecular docking studies using Discovery Studio (DS) 4.0. The drug parallel features of the same compounds were also assessed in silico. Results: Cytotoxicity experiments revealed that both the compounds were efficient in killing CRC cells on a controlled concentration basis. In addition, EGFR expression was down-regulated in the presence of the compounds. Docking studies unveiled that both the compounds were able to inhibit EGFR at its active site. Pharmacokinetic analysis of these compounds opened up their drug like behaviour. Conclusions: The findings of this study emphasize the importance of plant compounds for targeting diseases like CRC.

Identification of inhibitors against ROS1 targeting NSCLC by In- Silico approach

  • Bavya, Chandrasekhar
    • 통합자연과학논문집
    • /
    • 제15권4호
    • /
    • pp.171-177
    • /
    • 2022
  • ROS1 (c-ros oncogene) is one of the gene with mutation in NSCLC (non-small cell lung cancer). The increased expression of ROS1 is leading to the increase proliferation of cell, cell migration and survival. Crizotinib and Entrectinib are the drugs that have been approved by FDA against ROS1 protein, but recently patients started to develop resistance against Crizotinib and there is a need of new drug that could act as an effective drug against ROS1 for NSCLC. In this study, we have performed virtual screening, where compounds are taken from Zinc 15 dataset and molecular docking was performed. The top compounds were taken based upon their binding affinity and their interactions with the residues. The compounds stability and chemical reactivity was also studied through Density Functional theory and their properties. Further study of these compounds could reveal the required information of ROS1-inhibitor complex and in the discovery of potent inhibitors.

In-silico analysis of Lavender oil for Non-small cell lungcancer targeting ROS1

  • Bavya Chandrasekhar
    • 통합자연과학논문집
    • /
    • 제16권2호
    • /
    • pp.53-59
    • /
    • 2023
  • Lavender oil is a prolonged history in ancient medicine and has a wide range of biological effects. The lavender essential oil has 50 different constituents that have different therapeutic significance. The compounds that are separated from essential oil can be used for the anticancer treatment of non-small cell lung cancer. ROS1 is one of the major targets for NSCLC. The compounds from lavender essential oil are separated through GC-MS. From 91 compounds the top compounds that are having high retention values are taken for Molecular docking study against the ROS1 target protein. The binding affinity and the docked pose for those compounds are studied. Later, the chemical reactivity of the compounds is studied by Density Functional Theory. The potent compounds must be validated by in vivo study.

Structural Analysis of Recombinant Human Preproinsulins by Structure Prediction, Molecular Dynamics, and Protein-Protein Docking

  • Jung, Sung Hun;Kim, Chang-Kyu;Lee, Gunhee;Yoon, Jonghwan;Lee, Minho
    • Genomics & Informatics
    • /
    • 제15권4호
    • /
    • pp.142-146
    • /
    • 2017
  • More effective production of human insulin is important, because insulin is the main medication that is used to treat multiple types of diabetes and because many people are suffering from diabetes. The current system of insulin production is based on recombinant DNA technology, and the expression vector is composed of a preproinsulin sequence that is a fused form of an artificial leader peptide and the native proinsulin. It has been reported that the sequence of the leader peptide affects the production of insulin. To analyze how the leader peptide affects the maturation of insulin structurally, we adapted several in silico simulations using 13 artificial proinsulin sequences. Three-dimensional structures of models were predicted and compared. Although their sequences had few differences, the predicted structures were somewhat different. The structures were refined by molecular dynamics simulation, and the energy of each model was estimated. Then, protein-protein docking between the models and trypsin was carried out to compare how efficiently the protease could access the cleavage sites of the proinsulin models. The results showed some concordance with experimental results that have been reported; so, we expect our analysis will be used to predict the optimized sequence of artificial proinsulin for more effective production.

울금의 주요 성분인 커큐민과 나노 마이셀링 기법 적용 염화 커큐민의 트랜스타이레틴 활성 부위에 대한 결합 친화도 비교분석 (Molecular Docking Affinity Comparison of Curcumin and Nano-micelled Curcumin with Natural Sea Salt on Transthyretin)

  • 김동찬;송표
    • 생명과학회지
    • /
    • 제26권2호
    • /
    • pp.253-258
    • /
    • 2016
  • 본 연구에서는 울금의 주요 성분인 커큐민과 나노 마이셀링 기법을 적용한 신규 조성물인 염화 커큐민(NMC)의 트랜스타이레틴(TTR) 단백질 활성 부위에 대한 in silico 분자 결합 친화도를 비교 분석하였다. 우선 NMC신규 조성물의 결정학적 구조를 광학 및 전자현미경을 활용하여 관찰하였을 때, 나노 마이셀링 적용 NMC 결정은 일반 천일염에 비하여 색상 및 질감이 전체적으로 균일화 되었고, 천일염과 NMC성분이 강하게 일체화되어 기간이 상당히 경과 되더라도 쉽게 분리가 되지 않는 고기능성 안전성 구조물이 형성되었다. TTR단백질의 3차원 구조 활성 부위에 대한 in silico 분자 결합 친화도는 NMC가 일반 커큐민에 비하여 상대적으로 높은 결합 친화도를 나타나었고, pharmacophore 모델링 분석에서도 NMC가 일반 커큐민에 비하여 TTR 활성 부위에서 현저하게 pharmacophore 각도의 차이가 나타났었으며 패턴 또한 밀집된 특징을 나타내었다. 결론적으로, 나노 마이셀링 적용 NMC가 일반 커큐민에 비하여 상대적으로 우수하게 TTR 단백질의 활성 부위에 결합하는 것을 확인하였고, 이는 TTR 활성에 의해 유도되는 질병 조절 물질로의 적용 가능성이 있다고 판단된다. 결론적으로 일반 커큐민과 같은 생리 활성 효능 성분에 나노 마이셀링 기법을 적용하므로서 효율적인 결합 타깃 단백질 활발 조절 및 이러한 성분을 활용한 기능성 식품 산업에 나노 마이셀링 기법을 효율적으로 적용할 수 있음을 확인하였다.

Antiviral effect of fucoxanthin obtained from Sargassum siliquastrum (Fucales, Phaeophyceae) against severe acute respiratory syndrome coronavirus 2

  • Nalae Kang;Seong-Yeong Heo;Eun-A Kim;Seon-Heui Cha;Bomi Ryu;Soo-Jin Heo
    • ALGAE
    • /
    • 제38권4호
    • /
    • pp.295-306
    • /
    • 2023
  • Human coronavirus diseases, particularly severe acute respiratory syndrome coronavirus 2, still remain a persistent public health issue, and many recent studies are focusing on the quest for new leads against coronaviruses. To contribute to this growing pool of knowledge and explore the available marine natural products against coronaviruses, this study investigated the antiviral effects of fucoxanthin isolated from Sargassum siliquastrum-a brown alga found on Jeju Island, South Korea. The antiviral effects of fucoxanthin were confirmed in severe acute respiratory syndrome coronavirus 2-infected Vero cells, and its structural characteristics were verified in silico using molecular docking and molecular dynamic simulations and in vitro colorimetric method. Fucoxanthin inhibited the infection in a concentration-dependent manner, without showing cytotoxicity. Molecular docking simulations revealed that fucoxanthin binds to the angiotensinconverting enzyme 2-spike protein (binding energy -318.306 kcal mol-1) and main protease (binding energy -205.118 kcal mol-1). Moreover, molecular dynamic simulations showed that fucoxanthin remains docked to angiotensin-converting enzyme 2-spike protein for 20 ns, whereas it breaks away from main protease after 3 ns. Also, the in silico prediction of the fucoxanthin was verified through the in vitro colorimetric method by inhibiting the binding between angiotensinconverting enzyme 2 and spike protein in a concentration-dependent manner. These results indicate that fucoxanthin exhibits antiviral effects against severe acute respiratory syndrome coronavirus 2 by blocking the entry of the virus. Therefore, fucoxanthin from S. siliquastrum can be a potential candidate for treating coronavirus infection.

Computational Evaluation on the Interactions of an Opaque-Phase ABC Transporter Associated with Fluconazole Resistance in Candida albicans, by the Psidium guajava Bio-Active Compounds

  • Mithil Vora;Smiline Girija Aseervatham Selvi;Shoba Gunasekaran;Vijayashree Priyadharsini Jayaseelan
    • 대한약침학회지
    • /
    • 제27권2호
    • /
    • pp.91-100
    • /
    • 2024
  • Objectives: Candida albicans is an opportunistic pathogen that occurs as harmless commensals in the intestine, urogenital tract, and skin. It has been influenced by a variety of host conditions and has now evolved as a resistant strain. The aim of this study was thus detect the fluconazole resistant C. albicans from the root caries specimens and to computationally evaluate the interactions of an opaque-phase ABC transporter protein with the Psidium guajava bio-active compounds. Methods: 20 carious scrapings were collected from patients with root caries and processed for the isolation of C. albicans and was screened for fluconazole resistance. Genomic DNA was extracted and molecular characterization of Cdrp1 and Cdrp2 was done by PCR amplification. P. guajava methanolic extract was checked for the antifungal efficacy against the resistant strain of C. albicans. Further in-silico docking involves retrieval of ABC transporter protein and ligand optimization, molinspiration assessment on drug likeness, docking simulations and visualizations. Results: 65% of the samples showed the presence of C.albicans and 2 strains were fluconazole resistant. Crude methanolic extract of P. guajava was found to be promising against the fluconazole resistant strains of C. albicans. In-silico docking analysis showed that Myricetin was a promising candidate with a high docking score and other drug ligand interaction scores. Conclusion: The current study emphasizes that bioactive compounds from Psidium guajava to be a promising candidate for treating candidiasis in fluconazole resistant strains of C. albicans However, further in-vivo studies have to be implemented for the experimental validation of the same in improving the oral health and hygiene.

A novel tetrapeptide for the treatment of hair loss identified in ginseng berry: in silico characterization and molecular docking with TGF-β2

  • Sung-Gyu Lee;Sang Moon Kang;Hyun Kang
    • Journal of Plant Biotechnology
    • /
    • 제49권4호
    • /
    • pp.316-324
    • /
    • 2022
  • Hair loss causes psychological stress due to its effect on appearance. Therefore, the global market for hair loss treatment products is rapidly growing. The present study demonstrated that ginseng berry-derived and sequence-modified peptides promoted the proliferation rate of dermal papilla (DP) cells and keratinocytes, in addition to having antioxidant properties. Moreover, the potential role of these ginseng berry peptides as TGF-β2 antagonists was confirmed through in silico computer docking. In addition to promoting the growth of ,the ginseng berry-derived peptides also promoted the proliferation of keratinocytes experimental Particularly, an unmodified ginseng berry-derived peptide (GB-1) and two peptides with sequence modifications (GB-2 and GB-3) decreased ROS generation and exhibited a protective effect on damaged HaCaT keratinocytes. Computer-aided peptide discovery was conducted to identify the potential interactions of important proteins with transforming growth factor-beta 2 (TGF-β2), a key protein that plays a crucial role in the human hair growth cycle. Our results demonstrated that MAGH, an amino acid sequence present in herbal supplements and plant-based natural compounds, can inhibit TGF-β2.

Enhanced Drug Carriage Efficiency of Curcumin-Loaded PLGA Nanoparticles in Combating Diabetic Nephropathy via Mitigation of Renal Apoptosis

  • Asmita Samadder;Banani Bhattacharjee;Sudatta Dey;Arnob Chakrovorty;Rishita Dey;Priyanka Sow;Debojyoti Tarafdar;Maharaj Biswas;Sisir Nandi
    • 대한약침학회지
    • /
    • 제27권1호
    • /
    • pp.1-13
    • /
    • 2024
  • Background: Diabetic nephropathy (DN) is one of the major complications of chronic hyperglycaemia affecting normal kidney functioning. The ayurvedic medicine curcumin (CUR) is pharmaceutically accepted for its vast biological effects. Objectives: The Curcuma-derived diferuloylmethane compound CUR, loaded on Poly (lactide-co-glycolic) acid (PLGA) nanoparticles was utilized to combat DN-induced renal apoptosis by selectively targeting and modulating Bcl2. Methods: Upon in silico molecular docking and screening study CUR was selected as the core phytocompound for nanoparticle formulation. PLGA-nano-encapsulated-curcumin (NCUR) were synthesized following standard solvent displacement method. The NCUR were characterized for shape, size and other physico-chemical properties by Atomic Force Microscopy (AFM), Dynamic Light Scattering (DLS) and Fourier-Transform Infrared (FTIR) Spectroscopy studies. For in vivo validation of nephro-protective effects, Mus musculus were pre-treated with CUR at a dose of 50 mg/kg b.w. and NCUR at a dose of 25 mg/kg b.w. (dose 1), 12.5 mg/kg b.w (dose 2) followed by alloxan administration (100 mg/kg b.w) and serum glucose levels, histopathology and immunofluorescence study were conducted. Results: The in silico study revealed a strong affinity of CUR towards Bcl2 (dock score -10.94 Kcal/mol). The synthesized NCUR were of even shape, devoid of cracks and holes with mean size of ~80 nm having -7.53 mV zeta potential. Dose 1 efficiently improved serum glucose levels, tissue-specific expression of Bcl2 and reduced glomerular space and glomerular sclerosis in comparison to hyperglycaemic group. Conclusion: This study essentially validates the potential of NCUR to inhibit DN by reducing blood glucose level and mitigating glomerular apoptosis by selectively promoting Bcl2 protein expression in kidney tissue.

In Silico 분자결합 분석방법을 활용한 tubocurarine과 승마 추출성분 actein의 아세틸콜린 결합 단백질 활성 부위에 대한 결합 친화도 비교 분석 (In Silico Molecular Docking Comparison of Tubocurarine and the Active Ingredients of Cimicifugae rhizoma on Acetylcholine Binding Proteins)

  • 김동찬
    • 생명과학회지
    • /
    • 제28권4호
    • /
    • pp.408-414
    • /
    • 2018
  • Actein은 널리 알려진 승마 추출물의 주요 생리 활성 효능 성분이다. 본 연구에서는 acetylcholine 수용체의 활성을 억제하는 것으로 활용된 AchBP 단백질 길항제(antagonist) tubocurarine과 승마 추출물의 효능 성분 actein 및 actein 유도체(27-deoxyactin, (26S)-actein, (26R)-actein)들의 AchBP 단백질 B와 C domain 활성 부위에 대한 친화도 분석 실험을 컴퓨터 분자결합 분석 방법을 통해 비교하였다. AchBP 단백질 B와 C domain의 3차원 구조정보는 PDB database (PDB ID: 2XYT)를 활용하였다. In silico 결합 분석을 수행하기 위해 PyRx, Autodock Vina, Discovery Studio Version 4.5, and NX-QuickPharm 프로그램을 각 분석 조건에 따라 활용하였다. AchBP 단백질 B와 C domain 활성 부위에 대한 actein의 최대 결합친화도는 -10.50 kcal/mol으로 나왔으며 이는 -9.80 kcal/mol으로 분석된 tubocurarine의 결합 친화도 보다 훨씬 더 높고 효율적인 것으로 분석되었다. Tubocurarine에 비하여 결합친화도 값이 높게 분석된actein, 27-deoxyactein, (26R)-actein 유도체 성분들과 상호작용 하는 AchBP 단백질 활성 부위의 아미노산들 가운데 tryptophan 84와 tyrosine 147이 높은 결합친화도를 형성하는데 매우 중요한 역할을 하는 아미노산으로 예상이 되었다. Tubocurarine의 AchBP 단백질 활성 부위에 대한 X,Y,Z Grid 값은 X=38.300689, Y=112.053467, Z=51.991022으로 나왔으나 actein과 actein 유도체들은 대부분 X=26.4, Y=127.3, Z=43.7 값 주변에 centroid grid를 형성하였다. 즉, tubocurarine이 결합하는 부위와는 다른 부위에 결합하여 AchBP의 활성에 영향을 주는 것으로 사료되었다. 이상의 연구 결과들을 분석해 볼 때, 아세틸콜린 수용체 길항제 tubocurarine보다 승마 추출물 생리 활성 물질인 actein과 그 유도체들이 보다 더 효율적인 아세틸콜린 수용체 길항제로 작용할 수 있음을 확인하였다. 결론적으로 승마 추출물 또는 actein 성분은 피부 주름 개선 효능을 지닌 보톡스를 대체하거나 또는 주름 개선용 화장품 신물질 연구 개발 분야에 효율적으로 활용할 수 있을 것으로 사료된다.