• Title/Summary/Keyword: in silico analysis

Search Result 211, Processing Time 0.03 seconds

Molecular and Morphological Evidence of Hepatotoxicity after Silver Nanoparticle Exposure: A Systematic Review, In Silico, and Ultrastructure Investigation

  • Sooklert, Kanidta;Wongjarupong, Asarn;Cherdchom, Sarocha;Wongjarupong, Nicha;Jindatip, Depicha;Phungnoi, Yupa;Rojanathanes, Rojrit;Sereemaspun, Amornpun
    • Toxicological Research
    • /
    • v.35 no.3
    • /
    • pp.257-270
    • /
    • 2019
  • Silver nanoparticles (AgNPs) have been widely used in a variety of applications in innovative development; consequently, people are more exposed to this particle. Growing concern about toxicity from AgNP exposure has attracted greater attention, while questions about nanosilver-responsive genes and consequences for human health remain unanswered. By considering early detection and prevention of nanotoxicology at the genetic level, this study aimed to identify 1) changes in gene expression levels that could be potential indicators for AgNP toxicity and 2) morphological phenotypes correlating to toxicity of HepG2 cells. To detect possible nanosilver-responsive genes in xenogenic targeted organs, a comprehensive systematic literature review of changes in gene expression in HepG2 cells after AgNP exposure and in silico method, connection up- and down-regulation expression analysis of microarrays (CU-DREAM), were performed. In addition, cells were extracted and processed for transmission electron microscopy to examine ultrastructural alterations. From the Gene Expression Omnibus (GEO) Series database, we selected genes that were up- and down-regulated in AgNPs, but not up- and down-regulated in silver ion exposed cells, as nanosilver-responsive genes. HepG2 cells in the AgNP-treated group showed distinct ultrastructural alterations. Our results suggested potential representative gene data after AgNPs exposure provide insight into assessment and prediction of toxicity from nanosilver exposure.

Anti-Inflammatory Activity of Antimicrobial Peptide Periplanetasin-5 Derived from the Cockroach Periplaneta americana

  • Kim, In-Woo;Lee, Joon Ha;Seo, Minchul;Lee, Hwa Jeong;Baek, Minhee;Kim, Mi-Ae;Shin, Yong Pyo;Kim, Sung Hyun;Kim, Iksoo;Hwang, Jae Sam
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.9
    • /
    • pp.1282-1289
    • /
    • 2020
  • Previously, we performed an in silico analysis of the Periplaneta americana transcriptome. Antimicrobial peptide candidates were selected using an in silico antimicrobial peptide prediction method. It was found that periplanetasin-5 had antimicrobial activity against yeast and gram-positive and gram-negative bacteria. In the present study, we demonstrated the anti-inflammatory activities of periplanetasin-5 in mouse macrophage Raw264.7 cells. No cytotoxicity was observed at 60 ㎍/ml periplanetasin-5, and treatment decreased nitric oxide production in Raw264.7 cells exposed to lipopolysaccharide (LPS). In addition, quantitative RT-PCR and enzyme-linked immunosorbent assay revealed that periplanetasin-5 reduced cytokine (tumor necrosis factor-α, interleukin-6) expression levels in the Raw264.7 cells. Periplanetasin-5 controlled inflammation by inhibiting phosphorylation of MAPKs, an inflammatory signaling element, and reducing the degradation of IκB. Through LAL assay, LPS toxicity was found to decrease in a periplanetasin-5 dose-dependent manner. Collectively, these data showed that periplanetasin-5 had anti-inflammatory activities, exemplified in LPS-exposed Raw264.7 cells. Thus, we have provided a potentially useful antibacterial peptide candidate with anti-inflammatory activities.

Allergenicity and toxicity evaluation of the PAT protein expressed in herbicide-tolerant genetically modified Zoysia japonica (제초제저항성 GM 잔디에서 발현된 PAT 단백질의 알레르겐 유발 가능성 및 독성 평가)

  • Jeong, Hye-Rin;Sun, Hyeon-Jin;Kang, Ji-Nam;Kang, Hong-Gyu;Lee, Hyo-Yeon
    • Journal of Plant Biotechnology
    • /
    • v.47 no.4
    • /
    • pp.316-323
    • /
    • 2020
  • This study aimed to evaluate the potential allergenicity and oral toxicity of the phosphinothricin acetyltransferase (PAT) protein expressed in Zoysia japonica, a herbicide-tolerant genetically modified (GM) zoysiagrass. In silico analysis of PAT showed no similarities with any known allergenic or toxic proteins, with <35% amino acid sequence homology with known allergens across a length of 80 amino acids and no continuous eight amino acid identity with known allergens. The PAT protein expressed in Z. japonica degraded very rapidly in the simulated gastric fluid in the presence of pepsin, and, no glycosylation of PAT was observed. The oral toxicity test revealed no mortality or toxic effect in mice following PAT administration at 4,000 mg/kg body weight. Our findings indicate that the PAT protein expressed in Zoysia japonica does not exhibit allergenic or toxic properties.

Acceptor Specificity of Amylosucrase from Deinococcus radiopugnans and Its Application for Synthesis of Rutin Derivatives

  • Kim, Myo-Deok;Jung, Dong-Hyun;Seo, Dong-Ho;Jung, Jong-Hyun;Seo, Ean-Jeong;Baek, Nam-In;Yoo, Sang-Ho;Park, Cheon-Seok
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.11
    • /
    • pp.1845-1854
    • /
    • 2016
  • The transglycosylation activity of amylosucrase (ASase) has received significant attention owing to its use of an inexpensive donor, sucrose, and broad acceptor specificity, including glycone and aglycone compounds. The transglycosylation reaction of recombinant ASase from Deinococcus radiopugnans (DRpAS) was investigated using various phenolic compounds, and quercetin-3-O-rutinoside (rutin) was found to be the most suitable acceptor molecule used by DRpAS. Two amino acid residues in DRpAS variants (DRpAS Q299K and DRpAS Q299R), assumed to be involved in acceptor binding, were constructed by site-directed mutagenesis. Intriguingly, DRpAS Q299K and DRpAS Q299R produced 10-fold and 4-fold higher levels of rutin transglycosylation product than did the wild-type (WT) DRpAS, respectively. According to in silico molecular docking analysis, the lysine residue at position 299 in the mutants enables rutin to more easily position inside the active pocket of the mutant enzyme than in that of the WT, due to conformational changes in loop 4.

Regulation of AKT Activity by Inhibition of the Pleckstrin Homology Domain-PtdIns(3,4,5)P3 Interaction Using Flavonoids

  • Kang, Yerin;Jang, Geupil;Ahn, Seunghyun;Lee, Youngshim;Shin, Soon Young;Yoon, Youngdae
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.8
    • /
    • pp.1401-1411
    • /
    • 2018
  • The serine-threonine kinase AKT plays a pivotal role in tumor progression and is frequently overactivated in cancer cells; this protein is therefore a critical therapeutic target for cancer intervention. We aimed to identify small molecule inhibitors of the pleckstrin homology (PH) domain of AKT to disrupt binding of phosphatidylinositol-3,4,5-trisphosphate (PIP3), thereby downregulating AKT activity. Liposome pulldown assays coupled with fluorescence spectrometry were used to screen flavonoids for inhibition of the AKT PH-PIP3 interaction. Western blotting was used to determine the effects of the inhibitors on AKT activation in cancer cells, and in silico docking was used for structural analysis and optimization of inhibitor structure. Several flavonoids showing up to 50% inhibition of the AKT PH-PIP3 interaction decreased the level of AKT activation at the cellular level. In addition, the modified flavonoid showed increased inhibitory effects and the approach would be applied to develop anticancer drug candidates. In this study, we provide a rationale for targeting the lipid-binding domain of AKT, rather than the catalytic kinase domain, in anticancer drug development.

Safty of Alternatives for Endocirne Disrupting Substances (내분비계장애물질 대체소재의 안전성)

  • Park, Chan Jin;Kim, Woong;Gye, Myung Chan
    • Korean Journal of Environmental Biology
    • /
    • v.33 no.4
    • /
    • pp.361-374
    • /
    • 2015
  • Endocirne disruptors (EDs) can cause fertility decrease, developmental disorder, and even cancer in animals. Until 90's, EDs were used in various synthetic products including paints, coatings, detergents, plastics, and plasticizers. Currently, in several countries, the production, trade and use of EDs or EDs-suspected chemicals have been regulated while activity to screen the alternatives for EDs including bisphenol-A, phthalate and nonylphenol is active. Although various toxicity test method was developed and applied for screening of alternatives, however, the safety of alternatives has been not fully demonstrated. Some alternatives have high structural similarity with existing EDs, raising the possible risk of endocrine disruption by alternatives. In an effort to develop the safe alternatives, we reviewed the effects of EDs such as bisphenol-A, phthalates, nonylphenol and their substituents. In addition, in-silico analysis for endocrine disrupting activities of some alternatives was presented.

Computational Evaluation on the Interactions of an Opaque-Phase ABC Transporter Associated with Fluconazole Resistance in Candida albicans, by the Psidium guajava Bio-Active Compounds

  • Mithil Vora;Smiline Girija Aseervatham Selvi;Shoba Gunasekaran;Vijayashree Priyadharsini Jayaseelan
    • Journal of Pharmacopuncture
    • /
    • v.27 no.2
    • /
    • pp.91-100
    • /
    • 2024
  • Objectives: Candida albicans is an opportunistic pathogen that occurs as harmless commensals in the intestine, urogenital tract, and skin. It has been influenced by a variety of host conditions and has now evolved as a resistant strain. The aim of this study was thus detect the fluconazole resistant C. albicans from the root caries specimens and to computationally evaluate the interactions of an opaque-phase ABC transporter protein with the Psidium guajava bio-active compounds. Methods: 20 carious scrapings were collected from patients with root caries and processed for the isolation of C. albicans and was screened for fluconazole resistance. Genomic DNA was extracted and molecular characterization of Cdrp1 and Cdrp2 was done by PCR amplification. P. guajava methanolic extract was checked for the antifungal efficacy against the resistant strain of C. albicans. Further in-silico docking involves retrieval of ABC transporter protein and ligand optimization, molinspiration assessment on drug likeness, docking simulations and visualizations. Results: 65% of the samples showed the presence of C.albicans and 2 strains were fluconazole resistant. Crude methanolic extract of P. guajava was found to be promising against the fluconazole resistant strains of C. albicans. In-silico docking analysis showed that Myricetin was a promising candidate with a high docking score and other drug ligand interaction scores. Conclusion: The current study emphasizes that bioactive compounds from Psidium guajava to be a promising candidate for treating candidiasis in fluconazole resistant strains of C. albicans However, further in-vivo studies have to be implemented for the experimental validation of the same in improving the oral health and hygiene.

Molecular Cloning, Bioinformatics Analysis and Expression Profiling of a Gene Encoding Vacuolar-type $H^+-ATP$ Synthetase (V-ATPase) c Subunit from Bombyx mori

  • Lu, Peng;Chen, Keping;Yao, Qin;Yang, Hua-Jun
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.15 no.2
    • /
    • pp.115-122
    • /
    • 2007
  • As the genome of B.mori is available in GenBank and the EST database of B.mori is expanding, identification of novel genes of B.mori is conceivable by data-mining techniques. We used the in silico cloning method to get the vacuolar-type $H^+-ATP$ synthetase (V-ATPase) c subunit (16 kDa proteolipid subunit) gene of B.mori and analysed with bioinformatics tools. The result was confirmed by RT-PCR and sequencing. The V-ATPase c subunit cDNA contains a 468 bp ORF. The ORF encoded a 155-residue protein that showed extensive homology with V-ATPase c subunits from other 15 species and contained four membrane-spanning helices. Tissue expression pattern analysis revealed that V-ATPase c expressed strongly in Malpighian tubules, not in fat body. This gene has been registered in GenBank under the accession number EU082222.

Characterization of Vancomycin Resistant Enterococci and Drug Ligand Interaction between vanA of E. faecalis with the Bio-Compounds from Aegles marmelos

  • Jayavarsha V;Smiline Girija A.S;Shoba Gunasekaran;Vijayashree Priyadharsini J
    • Journal of Pharmacopuncture
    • /
    • v.26 no.3
    • /
    • pp.247-256
    • /
    • 2023
  • Objectives: Enterococcus faecalis is a gram positive diplococci, highly versatile and a normal commensal of the gut microbiome. Resistance to vancomycin is a serious issue in various health-care setting exhibited by vancomycin resistant Enterococci (VRE) due to the alteration in the peptidoglycan synthesis pathway. This study is thus aimed to detect the VRE from the patients with root caries from the clinical isolates of E. faecalis and to evaluate the in-silico interactions between vanA and the Aegles marmelos bio-compounds. Methods: E. faecalis was phenotypically characterized from 20 root caries samples and the frequency of vanA and vanB genes was detected by polymerase chain reaction (PCR). Further crude methanolic extracts from the dried leaves of A. marmelos was assessed for its antimicrobial activity. This is followed by the selection of five A. marmelos bio-compounds for the computational approach towards the drug ligand interactions. Results: 12 strains (60%) of E. faecalis was identified from the root caries samples and vanA was detected from two strains (16%). Both the stains showed the presence of vanA and none of the strains possessed vanB. Crude extract of A. marmelos showed promising antibacterial activity against the VRE strains. In-silico analysis of the A. marmelos biocompounds revealed Imperatonin as the best compound with high docking energy (-8.11) and hydrogen bonds with < 140 TPSA (Topological polar surface area) and zero violations. Conclusion: The present study records the VRE strains among the root caries with imperatorin from A. marmelos as a promising drug candidate. However the study requires further experimentation and validation.

Analysis of Factors Affecting the Periplasmic Production of Recombinant Proteins in Escherichia coli

  • Mergulhao, Filipe J.;Monteiro, Gabriel A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.8
    • /
    • pp.1236-1241
    • /
    • 2007
  • Five fusion proteins between Z domains derived from Staphylococcal Protein A and Green Fluorescent Protein or Human Proinsulin were produced on the periplasm of Escherichia coli. The effects of the molecular weight and amino acid composition of the translocated peptide, culture medium composition, and growth phase of the bacterial culture were analyzed regarding the expression and periplasmic secretion of the recombinant proteins. It was found that secretion was not affected by the size of the translocated peptide (17-42 kDa) and that the highest periplasmic production values were obtained on the exponential phase of growth. Moreover, the highest periplasmic values were obtained in minimal medium, showing the relevance of the culture medium composition on secretion. In silico prediction analysis suggested that with respect to the five proteins used in this study, those that are prone to form ${\alpha}$-helix structures are more translocated to the periplasm.