• Title/Summary/Keyword: in silico Biology

Search Result 83, Processing Time 0.025 seconds

Characterization of the Salmonella typhi Outer Membrane Protein C

  • Toobak, Hoda;Rasooli, Iraj;Gargari, Seyed Latif Mousavi;Jahangiri, Abolfazl;Nadoushan, Mohammadreza Jalali;Owlia, Parviz;Astaneh, Shakiba Darvish Alipour
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.1
    • /
    • pp.128-134
    • /
    • 2013
  • Salmonella enterica serovar typhi, a Gram-negative food-borne pathogen, causes typhoid fever in humans. OmpC is an outer membrane porin of S. typhi expressed throughout the infection period. OmpC is potentially an attractive antigen for multivalent vaccines and diagnostic kit designs. In this study we combined in silico, in vitro and in vivo approaches to analyze various aspects of OmpC's antigenic properties. The conserved region, in addition to secondary and tertiary structures, and linear B cell epitopes, were predicted. A number of results obtained from in silico analyses were validated by experimental studies. OmpC was amplified, cloned and then expressed, with the recombinant protein then being purified. BALB/c mice were immunized by purified denatured OmpC. The titer of antibody was raised. Results of challenges with the pathogen revealed that the immunity is non-protective. Most of the theoretical and experimental results were in consensus. Introduced linear B cell epitopes can be employed for the design of diagnostic kits based on antigen-antibody interactions.

In-silico and In-vitro based studies of Streptomyces peucetius CYP107N3 for oleic acid epoxidation

  • Bhattarai, Saurabh;Niraula, Narayan Prasad;Sohng, Jae Kyung;Oh, Tae-Jin
    • BMB Reports
    • /
    • v.45 no.12
    • /
    • pp.736-741
    • /
    • 2012
  • Certain members of the cytochromes P450 superfamily metabolize polyunsaturated long-chain fatty acids to several classes of oxygenated metabolites. An approach based on in silico analysis predicted that Streptomyces peucetius CYP107N3 might be a fatty acid-metabolizing enzyme, showing high homology with epoxidase enzymes. Homology modeling and docking studies of CYP107N3 showed that oleic acid can fit directly into the active site pocket of the double bond of oleic acid within optimum distance of $4.6{\AA}$ from the Fe. In order to confirm the epoxidation activity proposed by in silico analysis, a gene coding CYP107N3 was expressed in Escherichia coli. The purified CYP107N3 was shown to catalyze $C_9-C_{10}$ epoxidation of oleic acid in vitro to 9,10-epoxy stearic acid confirmed by ESI-MS, HPLC-MS and GC-MS spectral analysis.

GC-MS Analysis of Endophytic Bacteria Isolate Acalypha indica L. Compounds as Antibacterial

  • Dwyana Zaraswati;Annisa Andi;Johannes Eva;Wardhani Riuh
    • Mass Spectrometry Letters
    • /
    • v.15 no.3
    • /
    • pp.158-165
    • /
    • 2024
  • Pneumonia is an acute respiratory infection that primarily affects the lungs and is caused by various microorganisms, including viruses, fungi, and bacteria. Klebsiella pneumoniae, a multidrug-resistant (MDR) and extensively drug-resistant (XDR) bacterium, is a leading cause of widespread pneumonia. This study aimed to identify endophytic bacteria from the leaves of Acalypha indica L. and evaluate their antibacterial properties through both in vitro and in silico approaches. The objectives included isolating endophytic bacteria from Acalypha indica L., testing their antibacterial activity against Klebsiella pneumoniae, identifying the selected bacterial isolates using molecular techniques, analyzing their secondary metabolites via gas chromatography-mass spectrometry (GC-MS), and performing in silico molecular docking studies. The study identified BE 4, an endophytic bacterial isolate of Bacillus pumilus, as exhibiting the most potent antibacterial activity against Klebsiella pneumoniae. GC-MS analysis of the ethyl acetate extract of this isolate revealed 1,2-benzenedicarboxylic acid, bis(2-methylpropyl) ester as the primary metabolite component. Furthermore, molecular docking analysis identified two natural compound ligands, 1,2-benzenedicarboxylic acid, diethyl ester (-6.5 kcal/mol), and lilial (-6.2 kcal/mol), as having potential efficacy against drugresistant bacteria responsible for pneumonia. These findings suggest that endophytic bacteria and their bioactive compounds could serve as promising candidates for the development of new treatments against drug-resistant pneumonia.

Anti-Inflammatory Activity of Antimicrobial Peptide Periplanetasin-5 Derived from the Cockroach Periplaneta americana

  • Kim, In-Woo;Lee, Joon Ha;Seo, Minchul;Lee, Hwa Jeong;Baek, Minhee;Kim, Mi-Ae;Shin, Yong Pyo;Kim, Sung Hyun;Kim, Iksoo;Hwang, Jae Sam
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.9
    • /
    • pp.1282-1289
    • /
    • 2020
  • Previously, we performed an in silico analysis of the Periplaneta americana transcriptome. Antimicrobial peptide candidates were selected using an in silico antimicrobial peptide prediction method. It was found that periplanetasin-5 had antimicrobial activity against yeast and gram-positive and gram-negative bacteria. In the present study, we demonstrated the anti-inflammatory activities of periplanetasin-5 in mouse macrophage Raw264.7 cells. No cytotoxicity was observed at 60 ㎍/ml periplanetasin-5, and treatment decreased nitric oxide production in Raw264.7 cells exposed to lipopolysaccharide (LPS). In addition, quantitative RT-PCR and enzyme-linked immunosorbent assay revealed that periplanetasin-5 reduced cytokine (tumor necrosis factor-α, interleukin-6) expression levels in the Raw264.7 cells. Periplanetasin-5 controlled inflammation by inhibiting phosphorylation of MAPKs, an inflammatory signaling element, and reducing the degradation of IκB. Through LAL assay, LPS toxicity was found to decrease in a periplanetasin-5 dose-dependent manner. Collectively, these data showed that periplanetasin-5 had anti-inflammatory activities, exemplified in LPS-exposed Raw264.7 cells. Thus, we have provided a potentially useful antibacterial peptide candidate with anti-inflammatory activities.

Anticancer Activity of Periplanetasin-5, an Antimicrobial Peptide from the Cockroach Periplaneta americana

  • Kim, In-Woo;Choi, Ra-Yeong;Lee, Joon Ha;Seo, Minchul;Lee, Hwa Jeong;Kim, Mi-Ae;Kim, Seong Hyun;Kim, Iksoo;Hwang, Jae Sam
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.10
    • /
    • pp.1343-1349
    • /
    • 2021
  • Cockroaches live in places where various pathogens exist and thus are more likely to use antimicrobial compounds to defend against pathogen intrusions. We previously performed an in silico analysis of the Periplaneta americana transcriptome and detected periplanetasin-5 using an in silico antimicrobial peptide prediction method. In this study, we investigated whether periplanetasin-5 has anticancer activity against the human leukemia cell line K562. Cell growth and survival of K562 cells treated with periplanetasin-5 were decreased in a dose-dependent manner. By using flow cytometric analysis, acridine orange/ethidium bromide (AO/EB) staining and DNA fragmentation, we found that periplanetasin-5 induced apoptotic and necrotic cell death in leukemia cells. In addition, these events were associated with increased levels of the pro-apoptotic proteins Fas and cytochrome c and reduced levels of the anti-apoptotic protein Bcl-2. Periplanetasin-5 induces the cleavage of pro-caspase-9, pro-caspase-8, pro-caspase-3, and poly (ADP-ribose) polymerase (PARP). The above data suggest that periplanetasin-5 induces apoptosis via both the intrinsic and extrinsic pathways. Moreover, caspase-related apoptosis was further confirmed by using the caspase inhibitor carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone (Z-VAD-FMK), which reversed the periplanetasin-5-induced reduction in cell viability. In conclusion, periplanetasin-5 caused apoptosis in leukemia cells, suggesting its potential utility as an anticancer therapeutic agent.

Enhanced Drug Carriage Efficiency of Curcumin-Loaded PLGA Nanoparticles in Combating Diabetic Nephropathy via Mitigation of Renal Apoptosis

  • Asmita Samadder;Banani Bhattacharjee;Sudatta Dey;Arnob Chakrovorty;Rishita Dey;Priyanka Sow;Debojyoti Tarafdar;Maharaj Biswas;Sisir Nandi
    • Journal of Pharmacopuncture
    • /
    • v.27 no.1
    • /
    • pp.1-13
    • /
    • 2024
  • Background: Diabetic nephropathy (DN) is one of the major complications of chronic hyperglycaemia affecting normal kidney functioning. The ayurvedic medicine curcumin (CUR) is pharmaceutically accepted for its vast biological effects. Objectives: The Curcuma-derived diferuloylmethane compound CUR, loaded on Poly (lactide-co-glycolic) acid (PLGA) nanoparticles was utilized to combat DN-induced renal apoptosis by selectively targeting and modulating Bcl2. Methods: Upon in silico molecular docking and screening study CUR was selected as the core phytocompound for nanoparticle formulation. PLGA-nano-encapsulated-curcumin (NCUR) were synthesized following standard solvent displacement method. The NCUR were characterized for shape, size and other physico-chemical properties by Atomic Force Microscopy (AFM), Dynamic Light Scattering (DLS) and Fourier-Transform Infrared (FTIR) Spectroscopy studies. For in vivo validation of nephro-protective effects, Mus musculus were pre-treated with CUR at a dose of 50 mg/kg b.w. and NCUR at a dose of 25 mg/kg b.w. (dose 1), 12.5 mg/kg b.w (dose 2) followed by alloxan administration (100 mg/kg b.w) and serum glucose levels, histopathology and immunofluorescence study were conducted. Results: The in silico study revealed a strong affinity of CUR towards Bcl2 (dock score -10.94 Kcal/mol). The synthesized NCUR were of even shape, devoid of cracks and holes with mean size of ~80 nm having -7.53 mV zeta potential. Dose 1 efficiently improved serum glucose levels, tissue-specific expression of Bcl2 and reduced glomerular space and glomerular sclerosis in comparison to hyperglycaemic group. Conclusion: This study essentially validates the potential of NCUR to inhibit DN by reducing blood glucose level and mitigating glomerular apoptosis by selectively promoting Bcl2 protein expression in kidney tissue.

Characterization of Gel16 as a Cytochrome P450 in Geldanamycin Biosynthesis and in-silico Analysis for an Endogenous Electron Transport System

  • Rimal, Hemraj;Yu, Sang-Cheol;Lee, Byeongsan;Hong, Young-Soo;Oh, Tae-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.1
    • /
    • pp.44-54
    • /
    • 2019
  • Geldanamycin and its derivatives, inhibitors of heat shock protein 90, are considered potent anticancer drugs, although their biosynthetic pathways have not yet been fully elucidated. The key step of conversion of 4,5-dihydrogeldanamycin to geldanamycin was expected to catalyze by a P450 monooxygenase, Gel16. The adequate bioconversions by cytochrome P450 mostly rely upon its interaction with redox partners. Several ferredoxin and ferredoxin reductases are available in the genome of certain organisms, but only a few suitable partners can operate in full efficiency. In this study, we have expressed cytochrome P450 gel16 in Escherichia coli and performed an in vitro assay using 4,5-dihydrogeldanamycin as a substrate. We demonstrated that the in silico method can be applicable for the efficient mining of convenient endogenous redox partners (9 ferredoxins and 6 ferredoxin reductases) against CYP Gel16 from Streptomyces hygroscopicus. The distances for ligand FDX4-FDR6 were found to be $9.384{\AA}$. Similarly, the binding energy between Gel16-FDX4 and FDX4-FDR6 were -611.88 kcal/mol and -834.48 kcal/mol, respectively, suggesting the lowest distance and binding energy rather than other redox partners. These findings suggest that the best redox partners of Gel16 could be NADPH ${\rightarrow}$ FDR6 ${\rightarrow}$ FDX4 ${\rightarrow}$ Gel16.

Development of a Novel Subunit Vaccine Targeting Fusobacterium nucleatum FomA Porin Based on In Silico Analysis

  • Jeong, Kwangjoon;Sao, Puth;Park, Mi-Jin;Lee, Hansol;Kim, Shi Ho;Rhee, Joon Haeng;Lee, Shee Eun
    • International Journal of Oral Biology
    • /
    • v.42 no.2
    • /
    • pp.63-70
    • /
    • 2017
  • Selecting an appropriate antigen with optimal immunogenicity and physicochemical properties is a pivotal factor to develop a protein based subunit vaccine. Despite rapid progress in modern molecular cloning and recombinant protein technology, there remains a huge challenge for purifying and using protein antigens rich in hydrophobic domains, such as membrane associated proteins. To overcome current limitations using hydrophobic proteins as vaccine antigens, we adopted in silico analyses which included bioinformatic prediction and sequence-based protein 3D structure modeling, to develop a novel periodontitis subunit vaccine against the outer membrane protein FomA of Fusobacterium nucleatum. To generate an optimal antigen candidate, we predicted hydrophilicity and B cell epitope parameter by querying to web-based databases, and designed a truncated FomA (tFomA) candidate with better solubility and preserved B cell epitopes. The truncated recombinant protein was engineered to expose epitopes on the surface through simulating amino acid sequence-based 3D folding in aqueous environment. The recombinant tFomA was further expressed and purified, and its immunological properties were evaluated. In the mice intranasal vaccination study, tFomA significantly induced antigen-specific IgG and sIgA responses in both systemic and oral-mucosal compartments, respectively. Our results testify that intelligent in silico designing of antigens provide amenable vaccine epitopes from hard-to-manufacture hydrophobic domain rich microbial antigens.

Identification of Egr1 Direct Target Genes in the Uterus by In Silico Analyses with Expression Profiles from mRNA Microarray Data

  • Seo, Bong-Jong;Son, Ji Won;Kim, Hye-Ryun;Hong, Seok-Ho;Song, Haengseok
    • Development and Reproduction
    • /
    • v.18 no.1
    • /
    • pp.1-11
    • /
    • 2014
  • Early growth response 1 (Egr1) is a zinc-finger transcription factor to direct second-wave gene expression leading to cell growth, differentiation and/or apoptosis. While it is well-known that Egr1 controls transcription of an array of targets in various cell types, downstream target gene(s) whose transcription is regulated by Egr1 in the uterus has not been identified yet. Thus, we have tried to identify a list of potential target genes of Egr1 in the uterus by performing multi-step in silico promoter analyses. Analyses of mRNA microarray data provided a cohort of genes (102 genes) which were differentially expressed (DEGs) in the uterus between Egr1(+/+) and Egr1(-/-) mice. In mice, the frequency of putative EGR1 binding sites (EBS) in the promoter of DEGs is significantly higher than that of randomly selected non-DEGs, although it is not correlated with expression levels of DEGs. Furthermore, EBS are considerably enriched within -500 bp of DEG's promoters. Comparative analyses for EBS of DEGs with the promoters of other species provided power to distinguish DEGs with higher probability as EGR1 direct target genes. Eleven EBS in the promoters of 9 genes among analyzed DEGs are conserved between various species including human. In conclusion, this study provides evidence that analyses of mRNA expression profiles followed by two-step in silico analyses could provide a list of putative Egr1 direct target genes in the uterus where any known direct target genes are yet reported for further functional studies.

Systemic Optimization of Microalgae for Bioactive Compound Production

  • Kim, Jeong-Dong;Lee, Choul-Gyun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.5
    • /
    • pp.418-424
    • /
    • 2005
  • The complexity of the biological system/biological systems has been fascinating and challenging for a long time. With the advent of mathematical tools with various omics technology, systems biology was born and is already ubiquitous in every area of biology and biotechnology. Microalgal biotechnology is no exception in this new trend. As tens of microalgal genomes become publicly available on the Internet, vast amounts of data from genomics, transcriptomics, and proteomics are reported everyday. Though there has not yet been enough data gathered on microalgal metabolomics, the in silica models for relatively simple cyanobacteria or for organelles, such as chloroplasts, will appear presently. With the help of systems biology, a more in-depth understanding of microalgae will be possible. Consequently, most industrially-interested microalgae can be metabolically redesigned/reconfigured as cell factories. Microalgae will be served as the hosts in white biotechnology.