DOI QR코드

DOI QR Code

Development of a Novel Subunit Vaccine Targeting Fusobacterium nucleatum FomA Porin Based on In Silico Analysis

  • Jeong, Kwangjoon (Department of Microbiology, Chonnam National University Medical School) ;
  • Sao, Puth (Department of Microbiology, Chonnam National University Medical School) ;
  • Park, Mi-Jin (Department of Microbiology, Chonnam National University Medical School) ;
  • Lee, Hansol (Department of Microbiology, Chonnam National University Medical School) ;
  • Kim, Shi Ho (Department of Microbiology, Chonnam National University Medical School) ;
  • Rhee, Joon Haeng (Department of Microbiology, Chonnam National University Medical School) ;
  • Lee, Shee Eun (Clinical Vaccine R&D Center, Chonnam National University Medical School)
  • Received : 2017.05.13
  • Accepted : 2017.06.08
  • Published : 2017.06.30

Abstract

Selecting an appropriate antigen with optimal immunogenicity and physicochemical properties is a pivotal factor to develop a protein based subunit vaccine. Despite rapid progress in modern molecular cloning and recombinant protein technology, there remains a huge challenge for purifying and using protein antigens rich in hydrophobic domains, such as membrane associated proteins. To overcome current limitations using hydrophobic proteins as vaccine antigens, we adopted in silico analyses which included bioinformatic prediction and sequence-based protein 3D structure modeling, to develop a novel periodontitis subunit vaccine against the outer membrane protein FomA of Fusobacterium nucleatum. To generate an optimal antigen candidate, we predicted hydrophilicity and B cell epitope parameter by querying to web-based databases, and designed a truncated FomA (tFomA) candidate with better solubility and preserved B cell epitopes. The truncated recombinant protein was engineered to expose epitopes on the surface through simulating amino acid sequence-based 3D folding in aqueous environment. The recombinant tFomA was further expressed and purified, and its immunological properties were evaluated. In the mice intranasal vaccination study, tFomA significantly induced antigen-specific IgG and sIgA responses in both systemic and oral-mucosal compartments, respectively. Our results testify that intelligent in silico designing of antigens provide amenable vaccine epitopes from hard-to-manufacture hydrophobic domain rich microbial antigens.

Keywords

References

  1. Milligan GN and Barrett AD. Vaccinology: An Essential Guide, pp 2-32, John Wiley & Sons, 2015, ISBN: 978-0-470-65616-7.
  2. Burton DR and Hangartner L. Broadly neutralizing antibodies to HIV and their role in vaccine design. Annu Rev Immunol. 2016;34:635-659. doi: 10.1146/annurev-immunol-041015-055515.
  3. Marston HD, Lurie N, Borio LL, and Fauci AS. Considerations for developing a Zika virus vaccine. N Engl J Med. 2016;375:1209-1212. doi: 10.1056/NEJMp1607762.
  4. Kanapathipillai R, Henao Restrepo AM, Fast P, Wood D, Dye C, Kieny M-P, and Moorthy V. Ebola vaccine-an urgent international priority. N Engl J Med. 2016;371: 2249-2251. doi: 10.1056/NEJMp1412166.
  5. Mills KH, Ross PJ, Allen AC, and Wilk MM. Do we need a new vaccine to control the re-emergence of pertussis? Trends Microbiol. 2014;22:49-52. doi: 10.1016/j.tim.2013.11.007.
  6. Henao-Tamayo M, Shanley CA, Verma D, Zilavy A, Stapleton MC, Furney SK, Podell B, and Orme IM. The efficacy of the BCG vaccine against newly emerging clinical strains of Mycobacterium tuberculosis. PloS One. 2015;10:e0136500. doi: 10.1371/journal.pone.0136500.
  7. Haq K and McElhaney JE. Immunosenescence: Influenza vaccination and the elderly. Curr Opin Immunol. 2014;29: 38-42. doi: 10.1016/j.coi.2014.03.008.
  8. Mangtani P, Abubakar I, Ariti C, Beynon R, Pimpin L, Fine PE, Rodrigues LC, Smith PG, Lipman M, and Whiting PF. Protection by BCG vaccine against tuberculosis: a systematic review of randomized controlled trials. Clin Infect Dis. 2014;58:470-480. doi: 10.1093/cid/cit790.
  9. Chapple IL and Genco R. Diabetes and periodontal diseases: consensus report of the Joint EFP/AAP Workshop on Periodontitis and Systemic Diseases. J Clin Periodontol. 2013;40 Suppl 14:S106-12. doi: 10.1902/jop.2013.1340011.
  10. Tonetti MS and Dyke TE. Periodontitis and atherosclerotic cardiovascular disease: consensus report of the Joint EFP/AAP Workshop on Periodontitis and Systemic Diseases. J Clin Periodontol. 2013; 40 Suppl 14:S24-9. doi: 10.1111/jcpe.12089.
  11. Meyer DH and Fives-Taylor PM. Oral pathogens: from dental plaque to cardiac disease. Curr Opin Microbiol. 1998;1: 88-95. https://doi.org/10.1016/S1369-5274(98)80147-1
  12. Nishihara T and Koseki T. Microbial etiology of periodontitis. Periodontol 2000. 2004; 36:14-26. DOI:10.1111/j.1600-0757.2004.03671.x.
  13. Pallen MJ and Wren BW. Bacterial pathogenomics. Nature. 2007;449:835-842. doi:10.1038/nature06248.
  14. Kostic AD, Xavier RJ, and Gevers D. The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology. 2014;146:1489-1499. doi: 10.1053/j.gastro.2014.02.009.
  15. Hajishengallis G. Immunomicrobial pathogenesis of periodontitis: keystones, pathobionts, and host response. Trends Immunol. 2014;35:3-11. doi: 10.1016/j.it.2013.09.001.
  16. Feres M, Teles F, Teles R, Figueiredo LC, and Faveri M. The subgingival periodontal microbiota of the aging mouth. Periodontol 2000. 2016;72:30-53. doi: 10.1111/prd.12136.
  17. Hand TW, Vujkovic-Cvijin I, Ridaura VK, and Belkaid Y. Linking the Microbiota, Chronic Disease, and the Immune System. Trends Endocrinol Metab. 2016;27:831-843. doi:10.1016/j.tem.2016.08.003.
  18. Wu M. A phylogenetic study of Fusobacterium nucleatum using the major outer membrane protein FomA. University of California, Los Angeles, 2014.
  19. Palmer RJ, Shah N, Valm A, Paster B, Dewhirst F, Inui T, and Cisar JO. Interbacterial adhesion networks within the early oral biofilm of individual human hosts. Appl Environ Microbiol. 2017;83:00407-00417. doi: 10.1128/AEM.00407-17.
  20. Bolstad A, Jensen H, and Bakken V. Taxonomy, biology, and periodontal aspects of Fusobacterium nucleatum. Clin Microbiol Rev. 1996;9:55-71.
  21. Liu P-F, Shi W, Zhu W, Smith JW, Hsieh S-L, Gallo RL, and Huang C-M. Vaccination targeting surface FomA of Fusobacterium nucleatum against bacterial co-aggregation: implication for treatment of periodontal infection and halitosis. Vaccine. 2010;28:3496-3505. doi: 10.1016/j.vaccine.2010.02.047.
  22. Signat B, Roques C, Poulet P, and Duffaut D. Role of Fusobacterium nucleatum in periodontal health and disease. Curr Issues Mol Biol. 2011;13:25-36.
  23. Darveau RP. Periodontitis: a polymicrobial disruption of host homeostasis. Nat Rev Microbiol. 2010;8:481-490. doi:10.1038/nrmicro2337.
  24. Holmgren J and Czerkinsky C. Mucosal immunity and vaccines. Nat Med. 2005;11: S45-S53. doi:10.1038/nm1213.
  25. Neutra MR and Kozlowski PA. Mucosal vaccines: the promise and the challenge. Nat Rev Immunol. 2006;6:148-158. doi:10.1038/nri1777.
  26. Hong SH, Byun Y-H, Nguyen CT, Kim SY, Seong BL, Park S, Woo G-J, Yoon Y, Koh JT, Fujihashi K, Rhee JH, and Lee SE. Intranasal administration of a flagellin-adjuvanted inactivated influenza vaccine enhances mucosal immune responses to protect mice against lethal infection. Vaccine. 2012;30:466-474. doi: 10.1016/j.vaccine.2011.10.058.
  27. Nguyen CT, Kim SY, Kim MS, Lee SE, and Rhee JH. Intranasal immunization with recombinant PspA fused with a flagellin enhances cross-protective immunity against Streptococcus pneumoniae infection in mice. Vaccine. 2011;29:5731-5739. doi: 10.1016/j.vaccine.2011.05.095.
  28. Puth S, Hong SH, Park MJ, Lee HH, Lee YS, Jeong K, Kang I-C, Koh JT, Moon B, Park SC, Rhee JH, Lee SE. Mucosal immunization with a flagellin-adjuvanted Hgp44 vaccine enhances protective immune responses in a murine Porphyromonas gingivalis infection model. Hum Vaccin Immunother. In press.
  29. Lee SE, Kim SY, Jeong BC, Kim YR, Bae SJ, Ahn OS, Lee JJ, Song HC, Kim JM, Choy HE, Chung SS, Kweon MN, and Rhee JH. A bacterial flagellin, Vibrio vulnificus FlaB, has a strong mucosal adjuvant activity to induce protective immunity. Infect Immun. 2005;74:694-702. DOI: 10.1128/IAI.74.1.694-702.2006.
  30. Lim JS, Nguyen KC, Nguyen CT, Jang IS, Han JM, Fabian C, Lee SE, Rhee JH, and Cho KA. Flagellin-dependent TLR5/caveolin-1 as a promising immune activator in immunosenescence. Aging Cell. 2015;14:907-915. doi:10.1111/acel.12383.
  31. Choi E-K, Lee H-H, Kang M-S, Kim B-G, Lim H-S, Kim S-M, and Kang I-C. Potentiation of bacterial killing activity of zinc chloride by pyrrolidine dithiocarbamate. J Microbiol. 2010;48:40-43. doi: 10.1007/s12275-009-0049-2.
  32. Parker JM, Guo D, and Hodges RS. New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: correlation of predicted surface residues with antigenicity and X-ray-derived accessible sites. Biochemistry. 1986; 25:5425-5432. https://doi.org/10.1021/bi00367a013
  33. Larsen JE, Lund O, and Nielsen M. Improved method for predicting linear B-cell epitopes. Immunome Res. 2006;2:2. DOI: 10.1186/1745-7580-2-2.
  34. Ponomarenko JV and Bourne PE. Antibody-protein interactions: benchmark datasets and prediction tools evaluation. BMC Struct Biol. 2007;7:64. DOI: 10.1186/1472-6807-7-64.
  35. Kelley LA, Mezulis S, Yates CM, Wass MN, and Sternberg MJ. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015;10:845-858. doi: 10.1038/nprot.2015.053.
  36. Demuth A, Aharonowitz Y, Bachmann TT, Blum-Oehler G, Buchrieser C, Covacci A, Dobrindt U, Emody L, van der Ende A, Ewbank J, Fernandez LA, Frosch M, Portillo FG-d, Gilmore MS, Glaser P, Goebel W, Hasnain SE, Heesemann J, Islam K, Korhonen T, Maiden M, Meyer TF, Montecucco C, Oswald E, Parkhill J, Pucciarelli MG, Ron E, Svanborg C, Uhlin BE, Wai SN, Wehland J, and Hacker J. Pathogenomics: An updated European Research Agenda. Infect Genet Evol. 2008;8:386-393. doi: 10.1016/j.meegid.2008.01.005.
  37. Choi J-I and Seymour GJ. Vaccines against periodontitis: a forward-looking review. J Periodontal Implant Sci. 2010;40: 153-163. doi: 10.5051/jpis.2010.40.4.153.
  38. Peterson SN, Meissner T, Su A, Snesrud E, Ong A, Schork N, Bretz W. Functional expression of dental plaque microbiota. Front Cell Infect Microbiol. 2014;4:108. doi: 10.3389/fcimb.2014.00108.
  39. Dimitrov DV. Systems approaches to computational modeling of the oral microbiome. Front Physiol. 2013;4:172. doi: 10.3389/fphys.2013.00172.
  40. Jorth P, Turner KH, Gumus P, Nizam N, Buduneli N, and Whiteley M. Metatranscriptomics of the Human Oral Microbiome during Health and Disease. MBio 2014. 5: e01012-01014-e01012-01014. doi:10.1128/mBio.01012-14.
  41. Singhrao SK, Harding A, Simmons T, Robinson S, Kesavalu L, and Crean S. Oral inflammation, tooth loss, risk factors, and association with progression. J Alzheimers Dis. 2014;42:723-737. doi: 10.3233/JAD-140387.
  42. Baek KJ, Ji S, Kim YC, and Choi Y. Association of the invasion ability of Porphyromonas gingivalis with the severity of periodontitis. Virulence. 2015;6:274-281. doi:10.1080/21505594.2014.1000764.
  43. de Molon RS, de Avila ED, Boas Nogueira AV, Chaves de Souza JA, Avila- Campos MJ, de Andrade CR, and Cirelli JA. Evaluation of the host response in various models of induced periodontal disease in mice. J Periodontol. 2014;85:465-477. doi: 10.1902/jop.2013.130225.