• Title/Summary/Keyword: in line motor

Search Result 711, Processing Time 0.03 seconds

Analysis of On-Line Partial Discharge Patterns in High Voltage Motor Stator Windings (고압전동기 고정자 권선의 운전중 부분방전 패턴 분석)

  • Kim, Hee-Dong;Ju, Young-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1824-1827
    • /
    • 2003
  • During normal machine operation, partial discharge(PD) measurements were performed with turbine generator analyzer(TGA) in two high voltage motors. Two 6.6kV motors were installed with 80pF capacitive couplers at the terminal box. The PD patterns were displayed two dimensional and three dimensional. TGA summarizes each plot with two quantifies such as the normalized quantity number(NQN) and the peak PD magnitude(Qm). Off-line PD measurements were conducted on one 4.16kV motor. The motor was energized to 2.4kV, 3.0kV, 3.5kV and 4.16kV, respectively. The PD levels in pC were measured with a conventional digital PD detector. The comparison of positive to negative PD indicates whether the defect elements of PD are within the insulation or on the insulation surface. Discharge at conductor surface was discovered in No. 1 motor. Internal discharges were generated in phase A, B and C of No. 2 motor, Slot discharges occurred in three phases of No. 3 motor.

  • PDF

Torque Ripple Reduction of BLDG Motors Using Single DC-Link Currant Sensor (DC Link단 단일 전류센서에 의한 브러시리스 직류 전동기의 토크 리플 저감)

  • Baek, Dae-Jin;Won, Chang-Hee;Lee, Kyo-Beum;Choy, Ick;Song, Joong-Ho;Yoo, Ji-Yoon
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.974-976
    • /
    • 2001
  • This paper presents a method to reduce commutation torque ripples occurred during commutation in brushless do motor drives using a single DC-link current sensor. In brushless dc motor drives with a single dc current sensor instead of 3-phase line current sensors, it is noted that dc-link current sensor cannot give any information corresponding to the motor currents during line current commutation intervals. A new technique to resolve such a problem is dealt with based on a deadbeat current control in which motor armature voltage command is computed from a dc-link current reference, an actual current and counter emf voltage. The simulation results show that the proposed method reduces the torque ripple significantly.

  • PDF

A Sensorless Speed Control of a Permanent Magnet Synchronous Motor that the Estimated Speed is Compensated by using an Instantaneous Reactive Power (순시무효전력을 이용하여 추정속도를 보상한 영구자석 동기전동기의 센세리스 속도 제어)

  • 최양광;김영석;전병호
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.11
    • /
    • pp.577-585
    • /
    • 2003
  • This paper proposes a new speed sensorless control method of a permanent magnet synchronous motor using an instantaneous reactive power. In the proposed algorithm, the line currents are estimated by a observer and the estimated speed can be yielded from the voltage equation because the information of speed is included in back emf. But the speed estimation error between the estimated and the real speeds is occured by errors due to measuring the motor parameters and sensing the line current and the input voltage. To minimize the speed estimation error, the estimated speed is compensated by using an instantaneous reactive power. In this paper, the proposed algorithm is not affected by mechanical motor parameters because the mechanical equation is not used. The effectiveness of algorithm is confirmed by the experiments.

Real-Time Control of DC Sevo Motor with Variable Load Using PID-Learning Controller (PID 학습제어기를 이용한 가변부하 직류서보전동기의 실시간 제어)

  • Kim, Sang-Hoon;Chung, In-Suk;Kang, Young-Ho;Nam, Moon-Hyon;Kim, Lark-Kyo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.3
    • /
    • pp.107-113
    • /
    • 2001
  • This paper deals with speed control of DC servo motor using a PID controller with a gain tuning based on a Back-Propagation(BP) Learning Algorithm. Conventionally a PID controller has been used in the industrial control. But a PID controller should produce suitable parameters for each system. Also, variables of the PID controller should be changed according to environments, disturbances and loads. In this paper described by a experiment that contained a method using a PID controller with a gain tuning based on a Back-Propagation(BP) Learning Algorithm, we developed speed characteristics of a DC servo motor on variable loads. The parameters of the controller are determined by neural network performed on on-line system after training the neural network on off-line system.

  • PDF

Rotor Fault Detection System for the Inverter Driven Induction Motor using Current Signals

  • Kim, Nam-Hun;Baik, Won-Sik;Kim, Min-Huei;Choi, Chang-Ho
    • Journal of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.224-231
    • /
    • 2009
  • The induction motor rotor fault diagnosis system using current signals, which are measured using an axis-transformation method, is presented in this paper. In inverter-fed motor drives, unlike line-driven motor drives, the stator currents are rich in harmonics; therefore fault diagnosis using stator current is not trivial. The current signals for rotor fault diagnosis need precise and high resolution information, which means the diagnosis system demands additional hardware such as a low pass filter, high resolution ADC, and encoder, etc. The proposed axis-transformation method with encoder and without encoder is expected to contribute to a low cost fault diagnosis system in inverter-fed motor drives without the need for any additional hardware. In order to confirm the validity of the developed algorithms, various experiments for rotor faults are tested and the line current spectrum of each faulty situation using Park transformation is compared with the results obtained from fast Fourier transforms.

On-line Compensation Method for Magnetic Position Sensor using Recursive Least Square Method (재귀형 최소 자승법을 이용한 자기 위치 센서의 실시간 보상 방법)

  • Kim, Ji-Won;Moon, Seok-Hwan;Lee, Ji-Young;Chang, Jung-Hwan;Kim, Jang-Mok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2246-2253
    • /
    • 2011
  • This paper presents the error correction method of magnetic position sensor using recursive least square method (RLSM) with forgetting factor. Magnetic position sensor is proposed for linear position detection of the linear motor which has tooth shape stator, consists of permanent magnet, iron core and linear hall sensor, and generates sine and cosine waveforms according to the movement of the mover of the linear motor. From the output of magnetic position sensor, the position of the linear motor can be detected using arc-tan function. But the variation of the air gap between magnetic position sensor and the stator and the error in manufacturing process can cause the variation in offset, phase and amplitude of the generated waveforms when the linear motor moves. These variations in sine and cosine waveforms are changed according to the current linear motor position, and it is very difficult to compensate the errors using constant value. In this paper, the generated sine and cosine waveforms from the magnetic position sensor are compensated on-line using the RLSM with forgetting factor. And the speed observer is introduced to reduce the effect of uncompensated harmonic component. The approaches are verified by some simulations and experiments.

The Evaluation of On-line Observer System of Linear Induction Motor Using a Transient FEM & Experiment for Sensorless Vector Control (센서리스 벡터 제어를 위한 과도 FEM & 실험을 이용한 선형 유도 전동기의 On-line 관측기시스템의 설계)

  • Jun, Myung-Jin;Lee, Byeong-Du;Lee, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1099-1100
    • /
    • 2011
  • This study deals with the dynamic characteristics analysis of Linear Induction Motor (LIM) using finite element method in which the moving mesh technique is considered. The focus of this paper is to show the appropriate of on-line observer system for position sensorless control of a LIM under the phase asymmetry, saturation and iron loss. Comparisons are given with angle of the observer and that of proposed FEA method of linear induction motor, respectively. The position sensorless control system is realized, and the effective of the observer system is verified by experimental results.

  • PDF

Optimal Design of Single-Phase Line-Start Permanent Magnet Synchronous Motor by using Design of Experiment (실험계획법을 이용한 단상 유도형 동기전동기의 최적 설계)

  • Kim, Seung-Joo;Jung, Dae-Sung;Lee, Chul-Kyu;Lee, Hyung-Woo;Lee, Ju;Oh, Se-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.4
    • /
    • pp.699-704
    • /
    • 2007
  • In this paper, optimized model was designed for the starting characteristic of the Single-Phase Line-Start Permanent Magnet Synchronous Motor by using the Design of Experiment. A field pole angle, thickness and distance from center axis of permanent magnet were selected as design factor. We executed the transient state characteristic analysis of 8 test models. The transient state characteristic analysis was executed by using the 2 dimensional Finite Element Method and the Time Difference Method. We checked the fact that the selected design factor affected starting characteristic of the Line-Start Permanent Magnet Synchronous Motor. Depend on this result we found the optimized design point by using the response optimization.

Dynamic Characteristic Analysis of Single-Phase Line-Start Permanent Magnet Synchronous Motor by Parameter Variation (단상 유도형 동기전동기의 파라미터 변화에 따른 동특성 해석)

  • Oh, Se-Young;Jung, Dae-Sung;Lim, Seung-Bin;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.763-764
    • /
    • 2006
  • In this paper, optimized model was designed for the starting characteristic of the Single-Phase Line-Start Permanent Magnet Synchronous Motor by using the Design of Experiment. A field pole angle, thickness and distance from center axis of permanent magnet were selected as design factor. We executed the transient state characteristic analysis of 8 test models. The transient state characteristic analysis was executed by using the 2 dimensional Finite Element Method and the Time Difference Method. We checked the fact that the selected design factor affected starting characteristic of the Line-Start Permanent Magnet Synchronous Motor. Depend on this result we found the optimized design point by using the response optimization.

  • PDF

An Application of NN on Off-line PD Diagnosis to Stator Coil of Traction Motor (견인전동기용 고정자 코일의 Off-line 부분방전 진단을 위한 NN의 적용)

  • Park, Seong-Hee;Lim, Kee-Joe;Kang, Seong-Hwa
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.8
    • /
    • pp.766-771
    • /
    • 2005
  • In this study, PD(partial discharge) signals which occur at stator coil of traction Motor are acquired these data are used for classifying the PD sources. NN(neural network) has recently applied to classify the PD pattern. The PD data are used for the learning process to classify PD sources. The PD data come from normal specimen and defective specimens such as internal void discharges, slot discharges and surface discharges. PD distribution parameters are calculated from a set of the data, which is used to realize diagnostic algorithm. NN which applies distribution parameters is useful to classify the PD patterns of defective sources generating in stator coil of traction motor.