• Title/Summary/Keyword: impulse excitation technique

Search Result 12, Processing Time 0.024 seconds

Modal Identification of a randomly excited 1-D structure using Scanned data (스캐닝 데이터를 이용한 랜덤 가진된 일차원 구조물의 모달 분석)

  • 경용수;왕세명;김상명;박기환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.241-246
    • /
    • 2002
  • Usually vibration properties are obtained from frequency response functions or impulse response functions of a system. Since the contact type sensors can affect the characteristics of vibrating systems, the non-contact type sensors such as laser Doppler vibrometer (LDV) are being widely used. Currently researches are being carried out in terms of modal analysis using a scanning vibrometer. For the continuous scan; the Chebyshev demodulation (or polynomial) is apparently suggested to extract the mode shapes. With single frequency sinusoidal excitation, this approach is well fitted. In this research, the Chebyshev demodulation technique has been applied to the impact excitation case. The vibration of the tested structure is modeled using impulse response functions. The technique is also adopted to the random excitation case. In order to verify the technique, a simply supported beam was chosen as the test rig. The calculation modules are developed by using MATLAB$\^$(R)/ in WindowsNT$\^$(R)/ environment.

  • PDF

Mode Shape Reconstruction of an impulse excited structure using HHT and CSLDV (HHT와 연속스캐닝 진동계를 이용한 임펄스가진된 구조물의 모드 형상 복원)

  • Kyong, Yong-Soo;Kim, Dae-Sung;Dayou, Jedol;Park, Kyi-Hwan;Wang, Se-Myung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.484-490
    • /
    • 2008
  • For CSLDV, the Chebyshev demodulation (or polynomial) technique and Hilbert transform approach have been used for mode shape reconstruction with harmonic excitation. In this paper, the Hilbert-Huang transform approach was applied as an alternative to impact excitation cases in terms of a numerical approach. The vibration of the tested structure is modeled using impulse response functions. In order to verify this technique, a simply supported beam was chosen as the test rig. With additional innovative steps which are the ideal-band pass filter and the nodal point determination, Hilbert-Huang transformation can be used for a good mode shape reconstruction even in the impact excitation case.

  • PDF

Experimental Investigations of Relationships between Resonance Frequencies and Elastic Moduli of Composite Materials by Impulse Excitation Method (Impulse Excitation Method에 의한 복합재료의 공진 주파수와 탄성계수 관계에 대한 실험적 고찰)

  • Kim, Hyeong-Sam;Lee, Jae-Hyeok;Lee, Dong-Sik;Park, Se-Man
    • Korean Journal of Materials Research
    • /
    • v.8 no.9
    • /
    • pp.843-848
    • /
    • 1998
  • The Usages of composite materials have been steadily on the rise in the industries of automobiles, air crafts, shipbuilding and other structures for transportations. Commonly required in those industries are light weight and high strength of the structures. Consequently, serious efforts in research have been focused on searching for light materials and on developments and characterizations of advanced substitutes including various kinds of composite materials. In this investigation, transversely isotropic composite materials are chosen and formed into two kinds of beams; Euler-Bernoulli beam(thin team) and Timoshenko beam(thick beam) for determinations of elastic constants. As an experimental technique Impulse Excitation Method is utilized to measure resonance frequencies of the beams of the composite materials in vibration tests. Elastic constants are evaluated from measured resonance frequencies for the two types of beams to observe and establish possible existence of effects of rotary inertia and shear deformations.

  • PDF

Mechanical parameters detection in stepped shafts using the FEM based IET

  • Song, Wenlei;Xiang, Jiawei;Zhong, Yongteng
    • Smart Structures and Systems
    • /
    • v.20 no.4
    • /
    • pp.473-481
    • /
    • 2017
  • This study suggests a simple, convenient and non-destructive method for investigation of the Young's modulus detection in stepped shafts which only utilizes the first-order resonant frequency in flexural mode and dimensions of structures. The method is based on the impulse excitation technique (IET) to pick up the fundamental resonant frequencies. The standard Young's modulus detection formulas for rectangular and circular cross-sections are well investigated in literatures. However, the Young's modulus of stepped shafts can not be directly detected using the formula for a beam with rectangular or circular cross-section. A response surface method (RSM) is introduced to design numerical simulation experiments to build up experimental formula to detect Young's modulus of stepped shafts. The numerical simulation performed by finite element method (FEM) to obtain enough simulation data for RSM analysis. After analysis and calculation, the relationship of flexural resonant frequencies, dimensions of stepped shafts and Young's modulus is obtained. Numerical simulations and experimental investigations show that the IET method can be used to investigate Young's modulus in stepped shafts, and the FEM simulation and RSM based IET formula proposed in this paper is applicable to calculate the Young's modulus in stepped shaft. The method can be further developed to detect mechanical parameters of more complicated structures using the combination of FEM simulation and RSM.

Detection of Impulse Signal in Noise Using a Minimum Variance Cepstrum -Application on Faults Detection in a Bearing System (최소 분산 캡스트럼을 이용한 노이즈 속에 묻힌 임펄스 검출 방법-베어링 결함 검출에의 적용)

  • 최영철;김양한
    • Journal of KSNVE
    • /
    • v.10 no.6
    • /
    • pp.985-990
    • /
    • 2000
  • The signals that can be obtained from rotating machines often convey the information of machine. For example, if the machine under investigation has faults, then these signals often have pulse signals, embedded in noise. Therefore the ability to detect the fault signal in noise is major concern of fault diagnosis of rotating machine, In this paper, minimum variance cepstrum (MV cepstrum) . which can easily detect impulse in noise, has been applied to detect the type of faults of ball bearing system. To test the performance of this technique. various experiments have been performed for ball bearing elements that have man made faults. Results show that minimum variance cepstrum can easily detect the periodicity due to faults and also shows the pattern of excitation by the faults.

  • PDF

New accuracy indicator to quantify the true and false modes for eigensystem realization algorithm

  • Wang, Shuqing;Liu, Fushun
    • Structural Engineering and Mechanics
    • /
    • v.34 no.5
    • /
    • pp.625-634
    • /
    • 2010
  • The objective of this paper is to apply a new proposed accuracy indicator to quantify the true and false modes for Eigensystem Realization Algorithm using output-based responses. First, a discrete mass-spring system and a simply supported continuous beam were modelled using finite element method. Then responses are simulated under random excitation. Natural Excitation Technique using only response measurements is applied to compute the impulse responses. Eigensystem Realization Algorithm is employed to identify the modal parameters on the simulated responses. A new accuracy indicator, Normalized Occurrence Number-NON, is developed to quantitatively partition the realized modes into true and false modes so that the false portions can be disregarded. Numerical simulation demonstrates that the new accuracy indicator can determine the true system modes accurately.

Effect of Size Factor on Estimating Elastic Modulus of Disk-Shaped Concrete Specimen Using Impact Resonance Test (충격공진법을 이용한 콘크리트 원판 시편의 탄성계수 추정에 크기 인자가 미치는 영향)

  • Kim, Min-Suk;Son, Joeng Jin;Lee, Chang Joon;Chung, Chul-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.1
    • /
    • pp.11-22
    • /
    • 2023
  • In this work, a depth-by-depth evaluation on the deterioration of concrete is suggested by utilizing disk shaped concrete specimens. Dynamic elastic modulus of cylindrical concrete was measured using a free-free resonance column method and compared with dynamic elastic modulus of disk-shaped concrete measured by impulse excitation technique(IET) and impact resonance(IR). According to the results of the experiment, both IET and IR methods showed a smaller difference in dynamic elastic modulus with smaller deviation in data when thickness of the disk specimen was increased. This trend was more evident from dynamic elastic modulus measured by IR method compared to that measured by IET. Variation in data was also smaller with the IR result. To increase the accuracy of the data, it is recommended to use the IR method for disk specimen with a diameter of 100mm and a thickness of 25mm.

System Identification for Structural Vibration of Layered Stone Pagoda System (적층식 석탑의 진동 시스템 인식)

  • Kim, Byeong Hwa
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.5
    • /
    • pp.237-244
    • /
    • 2017
  • This study proposes a numerical model to explain the closely placed double modes in the vibration of a layered stone pagoda system. The friction surface between the stones is modelled as the Timoshenko finite element while each stone layer is modelled as a rigid body. It is assumed that the irregular asperity on the friction surface enables the stone to be excited. This results in the closely placed modes that are composed of natural modes and self-excited modes. To examine the validity of the proposed model, a set of modal testing and analysis for a layered stone pagoda mock-up model has been conducted and a set of closely placed double modes are extracted. Applying the extended sensitivity-based system identification technique, the various system parameters are identified so that the modal parameters of the proposed numerical model are the same with those of the experimental mock-up. For a horizontal impulse excitation, the simulated acceleration responses are compared with measurements.

Design and experimental characterization of a novel passive magnetic levitating platform

  • Alcover-Sanchez, R.;Soria, J.M.;Perez-Aracil, J.;Pereira, E.;Diez-Jimenez, E.
    • Smart Structures and Systems
    • /
    • v.29 no.3
    • /
    • pp.499-512
    • /
    • 2022
  • This work proposes a novel contactless vibration damping and thermal isolation tripod platform based on Superconducting Magnetic Levitation (SML). This prototype is suitable for cryogenic environments, where classical passive, semi active and active vibration isolation techniques may present tribological problems due to the low temperatures and/or cannot guarantee an enough thermal isolation. The levitating platform consists of a Superconducting Magnetic Levitation (SML) with inherent passive static stabilization. In addition, the use of Operational Modal Analysis (OMA) technique is proposed to characterize the transmissibility function from the baseplate to the platform. The OMA is based on the Stochastic Subspace Identification (SSI) by using the Expectation Maximization (EM) algorithm. This paper contributes to the use of SSI-EM for SML applications by proposing a step-by-step experimental methodology to process the measured data, which are obtained with different unknown excitations: ambient excitation and impulse excitation. Thus, the performance of SSI-EM for SML applications can be improved, providing a good estimation of the natural frequency and damping ratio without any controlled excitation, which is the main obstacle to use an experimental modal analysis in cryogenic environments. The dynamic response of the 510 g levitating platform has been characterized by means of OMA in a cryogenic, 77 K, and high vacuum, 1E-5 mbar, environment. The measured vertical and radial stiffness are 9872.4 N/m and 21329 N/m, respectively, whilst the measured vertical and radial damping values are 0.5278 Nm/s and 0.8938 Nm/s. The first natural frequency in vertical direction has been identified to be 27.39 Hz, whilst a value of 40.26 Hz was identified for the radial direction. The determined damping values for both modes are 0.46% and 0.53%, respectively.

Design and Fabrication of EMAT for Excitation of SAW (SAW 여기를 위한 EMAT의 설계 및 제작에 관한 연구)

  • Kim, Heung-Ki;Lee, Jae-Seung;Jun, Kye-Suk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.9 no.3
    • /
    • pp.24-30
    • /
    • 1990
  • In this paper, meander line type EMAT(Electro-Magnetic Acoustic Transducer) has been designed and fabricated with effective properties for detecting flaw existing within one wavelength in depth, and its characteristics have been analyzed. For the purpose of getting effective dynamic and static magnetic intensity, the coil has been arrayed using wire with interval of 0.75 mm and width of 0.65 mm and permanent magnets with 1500 Gauss have been constructed respectively. The center frequency and fractional bandwidth of the fabricated EMAT was 2 MHz and 36% respectively and its impulse response has been measured by non-contacting technique(the distance between the conducting media and the coil was 0.15mm). In the measuring results, it has been shown that Insertion Loss(IL) was 45.46dB and it was good agreement with theoretical result.

  • PDF