• Title/Summary/Keyword: improved wavelet method

Search Result 162, Processing Time 0.029 seconds

A Study on the Multiresolutional Coding Based on Spline Wavelet Transform (스플라인 웨이브렛 변환을 이용한 영상의 다해상도 부호화에 관한 연구)

  • 김인겸;정준용;유충일;이광기;박규태
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.12
    • /
    • pp.2313-2327
    • /
    • 1994
  • As the communication environment evolves, there is an increasing need for multiresolution image coding. To meet this need, the entrophy constratined vector quantizer(ECVQ) for coding of image pyramids by spline wavelet transform is introduced in this paper. This paper proposes a new scheme for image compression taking into account psychovisual feature both in the space and frequency domains : this proposed method involves two steps. First we use spline wavelet transform in order to obtain a set of biorthogonal subclasses of images ; the original image is decomposed at different scale using a pyramidal algorithm architecture. The decomposition is along the vertical and horizontal directions and maintains constant the number of pixels required the image. Second, according to Shannon's rate distortion theory, the wavelet coefficients are vectored quantized using a multi-resolution ECVQ(entropy-constrained vector quantizer) codebook. The simulation results showed that the proposed method could achieve higher quality LENA image improved by about 2.0 dB than that of the ECVQ using other wavelet at 0.5 bpp and, by about 0.5 dB at 1.0 bpp, and reduce the block effect and the edge degradation.

  • PDF

Feedwater Flowrate Estimation Based on the Two-step De-noising Using the Wavelet Analysis and an Autoassociative Neural Network

  • Gyunyoung Heo;Park, Seong-Soo;Chang, Soon-Heung
    • Nuclear Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.192-201
    • /
    • 1999
  • This paper proposes an improved signal processing strategy for accurate feedwater flowrate estimation in nuclear power plants. It is generally known that ∼2% thermal power errors occur due to fouling Phenomena in feedwater flowmeters. In the strategy Proposed, the noises included in feedwater flowrate signal are classified into rapidly varying noises and gradually varying noises according to the characteristics in a frequency domain. The estimation precision is enhanced by introducing a low pass filter with the wavelet analysis against rapidly varying noises, and an autoassociative neural network which takes charge of the correction of only gradually varying noises. The modified multivariate stratification sampling using the concept of time stratification and MAXIMIN criteria is developed to overcome the shortcoming of a general random sampling. In addition the multi-stage robust training method is developed to increase the quality and reliability of training signals. Some validations using the simulated data from a micro-simulator were carried out. In the validation tests, the proposed methodology removed both rapidly varying noises and gradually varying noises respectively in each de-noising step, and 5.54% root mean square errors of initial noisy signals were decreased to 0.674% after de-noising. These results indicate that it is possible to estimate the reactor thermal power more elaborately by adopting this strategy.

  • PDF

Human Iris Recognition System using Wavelet Transform and LVQ (웨이브렛 변환과 LVQ를 이용한 홍채인식 시스템)

  • Lee, Gwan-Yong;Im, Sin-Yeong;Jo, Seong-Won
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.7
    • /
    • pp.389-398
    • /
    • 2000
  • The popular methods to check the identity of individuals include passwords and ID cards. These conventional method for user identification and authentication are not altogether reliable because they can be stolen and forgotten. As an alternative of the existing methods, biometric technology has been paid much attention for the last few decades. In this paper, we propose an efficient system for recognizing the identity of a living person by analyzing iris patterns which have a high level of stability and distinctiveness than other biometric measurements. The proposed system is based on wavelet transform and a competitive neural network with the improved mechanisms. After preprocessing the iris data acquired through a CCD camera, feature vectors are extracted by using Haar wavelet transform. LVQ(Learning Vector Quantization) is exploited to classify these feature vectors. We improve the overall performance of the proposed system by optimizing the size of feature vectors and by introducing an efficient initialization of the weight vectors and a new method for determining the winner in order to increase the recognition accuracy of LVQ. From the experiments, we confirmed that the proposed system has a great potential of being applied to real applications in an efficient and effective way.

  • PDF

Wavelet Image Coding Using the Significant Cluster Extraction by Morphology and the Adaptive Quantization (모폴로지에 의한 중요 클러스터 추출과 적응양자화를 이용한 웨이브릿 영상부호화)

  • 류태경;강경원;권기룡;김문수;문광석
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.2
    • /
    • pp.85-90
    • /
    • 2004
  • This paper proposes the wavelet image coding using the significant cluster extraction by morphology and the adaptive quantization. In the conventional MRWD method, the additional seed data takes large potion of the total data bits. The proposed method extracts the significant cluster using morphology to improve the coding efficiency. In addition, the adaptive quantization is proposed to reduce the number of redundant comparative operations which are indispensably occurred in the MRWD quantization. The experimental result shows that the proposed algorithm has the improved coding efficiency and computational cost while preserving superior PSNR

  • PDF

Classification of Textured Images Based on Discrete Wavelet Transform and Information Fusion

  • Anibou, Chaimae;Saidi, Mohammed Nabil;Aboutajdine, Driss
    • Journal of Information Processing Systems
    • /
    • v.11 no.3
    • /
    • pp.421-437
    • /
    • 2015
  • This paper aims to present a supervised classification algorithm based on data fusion for the segmentation of the textured images. The feature extraction method we used is based on discrete wavelet transform (DWT). In the segmentation stage, the estimated feature vector of each pixel is sent to the support vector machine (SVM) classifier for initial labeling. To obtain a more accurate segmentation result, two strategies based on information fusion were used. We first integrated decision-level fusion strategies by combining decisions made by the SVM classifier within a sliding window. In the second strategy, the fuzzy set theory and rules based on probability theory were used to combine the scores obtained by SVM over a sliding window. Finally, the performance of the proposed segmentation algorithm was demonstrated on a variety of synthetic and real images and showed that the proposed data fusion method improved the classification accuracy compared to applying a SVM classifier. The results revealed that the overall accuracies of SVM classification of textured images is 88%, while our fusion methodology obtained an accuracy of up to 96%, depending on the size of the data base.

A Study on Reconstruction of Degraded Signal using Wavelet Transform (웨이브렛 변환을 이용한 훼손된 신호의 복원에 관한 연구)

  • Kim Nam-Ho;Bae Sang-Bum;Ryu Ji-Goo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.6 no.1
    • /
    • pp.33-38
    • /
    • 2005
  • Degradation is generated by several causes in the process of digitalization or transmission of data. And its essential cause is noise. Therefore, researches for wavelet-based methods which reconstruct signal degraded by noise have continued. In AWGN(addtive white gaussian noise) environment, the general trend for denoising is to use the thresholding method. Reconstructed signal includes a lot of noise because these methods only consider statistical characteristic regarding noise. In this paper, we present a new method which uses the cumulation of wavelet detail coefficients. As a result, reconstruction of edges and denoising performance are improved. Also we compare existing methods using SNR(signal-to-noise ratio) as the standard of judgement of improvemental effect.

  • PDF

A Study on Feature Extraction of Partial Discharge Type Using Wavelet Transform (웨이블렛변환을 이용한 부분방전 종류의 특징추출에 관한 연구)

  • Park, Jae-Jun
    • The Journal of Information Technology
    • /
    • v.6 no.1
    • /
    • pp.65-70
    • /
    • 2003
  • In this papers, we proposed the new method in order to diagnosis partial discharge type of transformers. For wavelet transform, Daubechie's filter is used,, we can obtain wavelet coefficients which is used to extract featrue of statistical parameters(maximum value, average value, dispersion, skewness, kurtosis) about high frequency current signal per 3-electrode type(needle-plane electrode, IEC electrode and Void electrode). Also, these coefficients are used to identify signal of internal partial discharge in transformer. As a result, from compare of high frequency current signal amplitude and average value, we are obtained results of IEC electrode> Void electrode> Needle-Plane electrode. Otherwise, in case of skewness and kurtosis, we are obtained results of Void electrode> IEC electrode> Needle-Plane electrode. As improved method in order to diagnosis partial discharge type of transformers, we use neural network.

  • PDF

Improved H.263+ Rate Control via Variable Frame Rate Adjustment and Hybrid I-frame Coding

  • 송환준
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.5A
    • /
    • pp.726-742
    • /
    • 2000
  • A novel rte control algorithm consisting of two major components, i.e. a variable encoding frame rate method and a hybrid DCT/wavelet I-frame coding scheme, is proposed in this work for low bit rate video coding. Most existing rate control algorithms for low bit rate video focus on bit allocation at the macroblock level under a constant frame rate assumption. The proposed rate control algorithm is able to adjust the encoding frame rate at the expense of tolerable time-delay. Furthermore, an R-D optimized hybrid DCT/wavelet scheme is used for effective I-frame coding. The new rate-control algorithm attempts to achieve a good balance between spatial quality and temporal quality to enhance the overall human perceptual quality at low bit rates. It is demonstrated that the rate control algorithm achieves higher coding efficiency at low bit rates with a low additional computational cost. The variable frame rate method and hybrid I-frame coding scheme are compatible with the bi stream structure of H.263+.

  • PDF

Spliced Image Detection Using Characteristic Function Moments of Co-occurrence Matrix (동시 발생 행렬의 특성함수 모멘트를 이용한 접합 영상 검출)

  • Park, Tae-Hee;Moon, Yong-Ho;Eom, Il-Kyu
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.5
    • /
    • pp.265-272
    • /
    • 2015
  • This paper presents an improved feature extraction method to achieve a good performance in the detection of splicing forged images. Strong edges caused by the image splicing destroy the statistical dependencies between parent and child subbands in the wavelet domain. We analyze the co-occurrence probability matrix of parent and child subbands in the wavelet domain, and calculate the statistical moments from two-dimensional characteristic function of the co-occurrence matrix. The extracted features are used as the input of SVM classifier. Experimental results show that the proposed method obtains a good performance with a small number of features compared to the existing methods.

Bistatic ISAR Imaging with UWB Radar Employing Motion Compensation for Time-Frequency Transform (시간-주파수 변환에 요동보상을 적용한 UWB 레이다 바이스테틱 ISAR 이미징)

  • Jang, Moon-Kwang;Cho, Choon-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.7
    • /
    • pp.656-665
    • /
    • 2015
  • In this paper, we improved the clarity and quality of the radar imaging by applying motion compensation for time-frequency transform in B-ISAR imaging. The proposed motion compensation algorithm using UWB radar is verified. B-ISAR algorithm procedure and time-frequency transform for improved motion compensation are provided for theoretical ground. The image was created by a UWB Radar B-ISAR imaging algorithm method. Also, creating a B-ISAR imaging algorithm for motion compensation of time-frequency transformation method was used. The B-ISAR Imaging algorithm is implemented using STFT(Short-Time Fourier Transform), GWT(Gabor Wavelet Transform), and WVD(Wigner-Ville Distribution) approaches. The performance of STFT is compared with the GWT and WVD algorithms. It is found that the WVD image shows more clarity and decreased spread phenomenon than other methods.