• Title/Summary/Keyword: improved structural stress

Search Result 277, Processing Time 0.023 seconds

Fatigue property analysis of U rib-to-crossbeam connections under heavy traffic vehicle load considering in-plane shear stress

  • Yang, Haibo;Qian, Hongliang;Wang, Ping
    • Steel and Composite Structures
    • /
    • v.38 no.3
    • /
    • pp.271-280
    • /
    • 2021
  • In this study, the fatigue property of U rib-to-crossbeam connections in orthotropic steel bridge (OSB) crossbeams under heavy traffic vehicle load was investigated considering the effects of in-plane shear stress. The applicability of an improved structural stress (ISS) method was validated for the fatigue behavior analysis of nonwelded arc-shaped cutout regions in multiaxial stress states. Various types of fatigue testing specimens were compared for investigating the equivalent structural stress, fatigue crack initiation positions, and failure modes with the unified standards. Furthermore, the implications of OSB crossbeams and specified loading cases are discussed with respect to the improved method. The ISS method is proven to be applicable for analyzing the fatigue property of nonwelded arc-shaped cutout regions in OSB crossbeams. The used method is essential for gaining a reliable prediction of the most likely failure modes under a specific heavy traffic vehicle load. The evaluated results using the used method are proven to be accurate with a slighter standard deviation. We obtained the trend of equivalent structural stress in arc-shaped cutout regions and validated the crack initiation positions and propagation directions by comparing them with the fatigue testing results. The implications of crossbeam spans on fatigue property are less significant than the effects of crossbeams.

Design Improvement of Front-End Loader for Tractor to Reduce Stress Concentration and Evaluation of Impact Safety (응력집중 저감을 위한 트랙터용 프론트 로더의 설계개선 및 충격 안전성 평가)

  • Lee, Boo-Youn
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.3
    • /
    • pp.109-119
    • /
    • 2018
  • The purpose of this study is to evaluate the structural safety of the front-end loader for the 90 kW class of agricultural tractors in impact test conditions. Deformation and stress on the loader under the impact test conditions are analyzed using the commercial finite element analysis software ANSYS. In previous research dealing with the initial design of the loader, the maximum stress occurred in the mount and exceeded the yield strength of the material. In this paper, an improved design of the mount of the loader was proposed to reduce the stress concentration in the initial design. The safety of the improved design was verified by performing rigid-body dynamics analysis, transient structural analysis, and static structural analysis under three impact test conditions: a drop and catch test, a corner pull test, a corner push test. It was found that the local stress concentration in the mount that appeared in the initial design was greatly reduced in the improved design, and that the maximum stresses occurred in the three impact test conditions are smaller than the yield strength. It is expected that the design improvement of the mount proposed in this study and the method of analysis may be effectively used to enhance structural safety in the development of new model front loaders in the future.

Calculation of dynamic stress intensity factors and T-stress using an improved SBFEM

  • Tian, Xinran;Du, Chengbin;Dai, Shangqiu;Chen, Denghong
    • Structural Engineering and Mechanics
    • /
    • v.66 no.5
    • /
    • pp.649-663
    • /
    • 2018
  • The scaled boundary finite element method is extended to evaluate the dynamic stress intensity factors and T-stress with a numerical procedure based on the improved continued-fraction. The improved continued-fraction approach for the dynamic stiffness matrix is introduced to represent the inertial effect at high frequencies, which leads to numerically better conditioned matrices. After separating the singular stress term from other high order terms, the internal displacements can be obtained by numerical integration and no mesh refinement is needed around the crack tip. The condition numbers of coefficient matrix of the improved method are much smaller than that of the original method, which shows that the improved algorithm can obtain well-conditioned coefficient matrices, and the efficiency of the solution process and its stability can be significantly improved. Several numerical examples are presented to demonstrate the increased robustness and efficiency of the proposed method in both homogeneous and bimaterial crack problems.

A Study on the Characteristics of Two Dimensional Stress Wave Propagation Using the Distinct Element Method (개별요소법에 의한 이차원 응력파의 전달특성에 관한 연구)

  • 오금호;김문겸;원용호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.406-413
    • /
    • 1998
  • The distinct element method is improved to consider the charateristics of stress wave propagation in media involving the discontinuous faces. The distinct element method has many advantages to analyse the characteristics of the reflection, refraction and deflection of the waves in nonhomogeneous media. The double-suing connection system is adopted instead of the single-spring connection system because the distinct element cannot be used for analysing the contact behavior between the different materials by only one contact spring. For the verification of the improved code, the results of the numerical analysis are compared with that of the photoelastic experiments which are one or two dimensional wave propagation problem of the nonhomogeneous media including the different accoustic impendence material or voids. It is shown that the characteristics of the stress wave propagation in nonhomogeneous media can be simulated appropriately using the improved distinct element method.

  • PDF

A Comparison of improved EFG method with the singular expression for crack tip (균열선단의 특이성을 반영한 개선된 EFG 해석기법들의 비교)

  • 이상호;윤영철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.69-76
    • /
    • 2002
  • In this paper, several improved Element-Free Galerkin (EFG) methods containing singular expression in their approximation functions are compared one another through a patch test with near-tip field. Intrinsic enrichments that expand the basis function partially and fully with known near-tip displacement field and a local enrichment using auxiliary supports based on the partition of unity concept are examined by evaluating a relative stress norm error and the stress intensity factor. Some numerical examinations graphically show that how the size of compact support, dilation parameter and the diffraction parameter can affect the accuracy of the improved EFG methods in the error and the stress intensity factor.

  • PDF

A 2D hybrid stress element for improved prediction of the out-of-plane fields using Fourier expansion

  • Feng, M.L.;Dhanasekar, M.;Xiao, Q.Z.
    • Structural Engineering and Mechanics
    • /
    • v.13 no.5
    • /
    • pp.491-504
    • /
    • 2002
  • Recently we formulated a 2D hybrid stress element from the 3D Hellinger-Reissner principle for the analysis of thick bodies that are symmetric to the thickness direction. Polynomials have typically been used for all the displacement and stress fields. Although the element predicted the dominant stress and all displacement fields accurately, its prediction of the out-of-plane shear stresses was affected by the very high order terms used in the polynomials. This paper describes an improved formulation of the 2D element using Fourier series expansion for the out-of-plane displacement and stress fields. Numerical results illustrate that its predictions have markedly improved.

Low-cycle fatigue evaluation for girth-welded pipes based on the structural strain method considering cyclic material behavior

  • Lee, Jin-Ho;Dong, Pingsha;Kim, Myung-Hyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.868-880
    • /
    • 2020
  • One of the main concerns in the structural integrity of offshore pipelines is mechanical damage from external loads. Pipelines are exposed to fatigue failure in welded joints due to geometric discontinuity. In addition, fatigue loads such as currents, waves, and platform motions may cause significant plastic deformation and fracture or leakage within a relatively low-cycle regime. The 2007 ASME Div. 2 Code adopts the master S―N curve for the fatigue evaluation of welded joints based on the mesh-insensitive structural stress. An extension to the master S―N curve was introduced to evaluate the low-cycle fatigue strength. This structural strain method uses the tensile properties of the material. However, the monotonic tensile properties have limitations in describing the material behavior above the elastic range because most engineering materials exhibit hardening or softening behavior under cyclic loads. The goal of this study is to extend the cyclic stress-strain behavior to the structural strain method. To this end, structural strain-based procedure was established while considering the cyclic stress-strain behavior and compared to the structural strain method with monotonic tensile properties. Finally, the improved prediction method was validated using fatigue test data from full-scale girth-welded pipes.

Efficient Postprocessing for Finite Element Analysis on Microcomputers (마이크로컴퓨터를 이용한 유한요소해석의 효율적 Postprocessing)

  • 이재영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1990.04a
    • /
    • pp.53-58
    • /
    • 1990
  • This study was intended to provide efficient algorithms for high quality postprocess on the basis of microcomputers with limited capacity and functionality. Improved methods of postprocessing including stress contouring, internal force diagraming, and displacement animation, were proposed and implemented into a new finite element system. Visualization of three-dimensional structural behaviors was treated with special emphasis.

  • PDF

A Study on Ground Reinforcement Effect with Structural Forms of Improved Soil (개량체 구조형상에 따른 지반보강효과 연구)

  • Park, Kyunghan;Jang, Gisoo;Lee, Song
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.1
    • /
    • pp.25-34
    • /
    • 2014
  • The aim of this study is to analyze the mechanical characteristics and settlement feature of the composite ground with structural form changes. The laboratory model test is a soil tanker to be contained with clay and grid form improved soil, which is conducted in total 9 case with the uniaxial compressive strength of improved soil and replacement ratio of improved soil. The numerical analysis for variation of stress distribution ratio with depth was performed in the same conditions which are the laboratory model test. As a result, stress distribution ratios in mid and high replacement ratio are increasing and settlement is decreasing, except low replacement ratio. This study is presented for form effect ratio and settlement reduction factor with change of structure form, which is able to be helpful in further research and reference for change of structural forms at composite ground.

An Improved Quadratic Finite Element with Modified Integration Order (수정된 적분차수를 이용한 평면유한요소의 개선)

  • 김선훈;김주일;이창원;신재철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.42-49
    • /
    • 2001
  • In this paper the efficient finite element for stress analysis of plane stress/strain problems is proposed. This element is achieved by adding the bubble-mode function to 8-node element. The stiffness matrix of the element is calculated by using modified numerical integration order to avoid spurious zero energy mode. In order to demonstrate the performance of this element numerical tests for various verification problems are carried out. The results of numerical tests show accuracy and reliability of the element presented in this paper.

  • PDF