• Title/Summary/Keyword: improved flame retardancy

Search Result 32, Processing Time 0.021 seconds

Preparation and Characterization of poly(ethylene-co-vinyl acetate)/Magnesium Hydroxide Composites by Electron Beam Crosslinking (전자빔 가교에 의한 폴리(에틸렌-co-초산 비닐)/수산화 마그네슘 복합재료의 제조 및 평가)

  • Si-Hyeong Lee;Byoung-Min Lee;Hyun-Rae Kim;Sangwon Park;Jong-Seok Park;Yong Seok Kim;Sungmin Park;Jae-Hak Choi
    • Journal of Radiation Industry
    • /
    • v.17 no.3
    • /
    • pp.225-232
    • /
    • 2023
  • In this study, poly(ethylene-co-vinyl acetate)/magnesium hydroxide (EVA/MDH) composites were prepared by electron beam crosslinking. EVA as a matrix resin and MDH as a flame retardant were melt-blended and compression molded to prepare EVA/MDH composites. The prepared EVA/MDH composites were electron beam-irradiated at various absorbed doses of 50~200kGy. The effects of electron beam irradiation on the gel content, tensile strength, elongation-at-break, thermal properties, and flame retardancy of the composites were investigated. The gel content and tensile strength increased, while the elongation-at-break decreased with an increase in the absorbed dose due to the formation of crosslinked network structures. In addition, the thermal stability and flame retardancy improved as the absorbed dose increased. Therefore, the EVA/MDH composites prepared in this study can be used as an insulation material for flame-retardant and heat-resistant wires and cables.

Preparation of Reactive Flame Retardant Coatings Containing Phosphorus II. Preparation and Characterization of Polyurethane Coatings (반응형 인계 난연도료의 제조 II. 폴리우레탄 도료의 제조 및 도막특성)

  • Kim, Sung-Rae;Park, Hyong-Jin;Jung, Choong-Ho;Park, Hong-Soo;Im, Wan-Bin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.87-93
    • /
    • 2003
  • Two-component polyurethane flame retardant coatings (ATTBC) were prepared by blending polyisocyanate (TDI-adduct) with ATTBs mentioned at the previous paper. Most of the physical properties of the flame retardant coatings were comparable to those of non-flame retardant coatings. Especially, the hardness, impact resistance, and accelerated weathering resistance were remarkably improved with the increase of the content of 1,4-butanediol. Coatings containing 10 and 15 wt% 1,4-butanediol, ATTBC-10C and ATTBC-15C, were not flammable in vertical flame-retardancy test. Their char area recorded 1.1${\sim}$11.6 $cm^2$ in 45$^{\circ}$ eckel burner method.

Flame Retardant and Heat Radiating Composite Consisting of Polyurethane and Modified Boron Nitride (폴리우레탄과 개질된 질화붕소로 이루어진 난연성 방열 복합체)

  • Kim, Min-gyu;Lee, Chang-rock;Jo, Nam-Ju
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.487-494
    • /
    • 2020
  • Polyurethane/modified boron nitride (PU/m-BN) composite was synthesized from the poly(tetra methylene glycol) (PTMG), 4,4'-methylenebis(phenyl isocyanate) (MDI), and modified boron nitride (m-BN). The modification of boron nitride and synthesis of PU/m-BN composite were confirmed by Fourier transform infrared (FT-IR) spectroscopic analyses. The mechanical properties of the PU/m-BN composites were measured using the universal testing machine (UTM) and the thermal properties of the composites were investigated ser flash analysis (LFA) and UL94 measurements. As a result, the thermal conductivity of the polyurethane composite increased to 1.19 W/m·K, and the flame retardancy of the easy to burn polyurethane, which was not self-extinguishing was improved to UL94 V-1 grade.

A Study on the Preparation of Powder Coatings Containing Halogen-Free Flame Retardant and Fire Safety (Halogen-Free 난연제를 포함하는 파우더 코팅소재 제조 및 화재안전성 연구)

  • Lee, Soon-Hong;Chung, Hwa-Young;Kim, Dae-In;Noh, Tae-Joon
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.4
    • /
    • pp.47-58
    • /
    • 2011
  • Halogen free intumescent flame retardants(IFRS), such as the mixture of melamine phosphate(MP) and char forming agents(pentaerythritol(PER), di-pentaerythritol(DiPER), tris(2-hydroxyethyl) isocyanurate(THEIC)), were prepared and characterized. Polypropylene(PP)/$IFR_S$ composites were also prepared in the presence of ethylene diamine phosphate(EDAP) as a synergist and used into flame retardant PP powder coatings. Thermoplastic PP powder coatings at 20 wt% flame retardant loading were manufactured by extruded and then mechanical cryogenic crushed to bring them in fine powder form. These intumescent flame retardant powder coatings($IFRPC_S$) were applied on mild steel surface for the purpose of protection and decorative. It is a process in which a $IFRPC_S$ particles coming in contact with the preheated mild steel surface melt and form a thin coating layer. The obtained MP flame retardant was analyzed by utilizing FTIR, solid-state $^{31}P$ NMR, ICP, EA and PSA. The mechanical properties as tensile strength, melt flow index(MFI) and the thermal property as TGA/DTA and the fire safety characteristics as limiting oxygen index(LOI), UL94 test, SEM were used to investigate the effect of $IFRPC_S$. The experimental results show that the presence of $IFR_S$ considerably enhanced the fire retardant performances as evidenced by the increase of LOI values 17.3 vol% and 32.6 vol% for original PP and $IFRPC_S$-3(PP/MP-DiPER/EDAP), respectively, and a reduction in total flaming combustion time(under 15 sec) in UL94 test of $IFRPC_S$. The prepared $IFRPC_S$-3 have good comprehensive properties with fire retardancy 3.2 mm UL94 V-0 level, LOI value 32.6%, tensile strength $247.3kg/cm^2$, surface roughness Ra $0.78{\mu}m$, showing a better application prospect. Through $IFRPC_S$-2(PP/MP-PER/EDAP) and $IFRPC_S$-3 a better flame retardancy than that of the $IFRPC_S$-1(PP/MP/EDAP) was investigated which was responsible for the formed more dense and compact char layer, improved synergy effect of MP and PER/DiPER.

Durable Flame-Retardant Finish of Cotton Fabrics Using a Water-soluble Cyclophosphazene Derivative (수용해성 사이클로포스파젠 유도체를 이용한 면섬유의 내구성 방염가공)

  • Kim, Jeong-Hwan;Jang, Jinho
    • Textile Coloration and Finishing
    • /
    • v.33 no.2
    • /
    • pp.64-71
    • /
    • 2021
  • Large amount of formaldehyde could be released inevitably during the flame-retardant (FR) treatments or from the finished fabrics using Provatex reagent and Proban polymers which have been used as durable FRs for cotton. A water-soluble cyclophosphazene derivative was synthesized as an ecofriendly phosphorus-based FR for cotton fibers. Dichloro tetrakis{N-[3-(Dimethylamino)propyl]methacrylamido} cyclcophosphazene (DCTDCP) was synthesized through the substiutution reaction of Hexachloro cyclophosphazene and N-[3-(Dimethylamino)propyl] methacrylamide at a mole ratio of 1 : 4, which can be cured dually by both alkaline treatment and UV irradiation. More crosslinked networks were produced through the addition of Triacryloyl hexahydrotriazine and Acrylamide as a UV-curable crosslinker and a comonomer respectively. Both flame retardancy and washing durability of the FR cotton were improved synergistically. The durability improvement may be caused by the covalent bond formation of the FR with cellulose and the high degree of polymerization of DCTDCP, which can be verified by the pyrolysis and combustion behaviors analyzed by LOI, TGA, and microcalorimeter.

A Study on Fire Resistance of Abaca/Vinyl-ester Composites (마닐라 삼/비닐에스터 복합재료의 내화성 연구)

  • Lee, Dong-Woo;Park, Byung-Jin;Song, Jung-Il
    • Composites Research
    • /
    • v.30 no.1
    • /
    • pp.59-64
    • /
    • 2017
  • Eco-convivial composites with improved properties are essential to present polymer scenario and can be made easily by replacing partially/completely renewable materials either matrix or reinforcement along with few % of additives. In these investigations, Abaca fabric have been used as reinforcement for manufacturing of Vinyl ester composites through VARTM technique and study the effect of alkali surface treatment of abaca fabric and flame retardant additives i.e., ammonium polyphosphate (APP) with halloysite nano-clay (HNT) on mechanical and flame retardant properties. The results concluded that, surface treatment deceased the hydrophilic nature of fabric and enhanced the interfacial bonding with hydrophobic matrix and eventually increased mechanical properties slightly of developed composites. Similarly, the flame retardancy of the composites improved significantly and increases the burning time by varying the wt% of filler concentration.

Combustion-Retardation Properties of Pinus rigida Treated with Ammonium Salts (암모늄염으로 처리된 리기다 소나무의 난연성)

  • Chung, Yeong-Jin;Jin, Eui
    • Applied Chemistry for Engineering
    • /
    • v.21 no.6
    • /
    • pp.627-631
    • /
    • 2010
  • This study was performed to test the combustion-retardation properties of Pinus rigida-based materials by the treatment of ammonium salts. Pinus rigida plate was soaked by the treatment with three 20 wt% ammonium salt solutions consisting ammonium sulfate (AMSF), monoammonium phosphate (MAPP), and diammonium phosphate (DAPP), respectively, at the room temperature. After the drying specimen treated with chemicals, combustion properties were examined by the cone calorimeter (ISO 5660-1). When the ammonium salts were used as the retardant for Pinus rigida, the flame retardancy improved due to the treated ammonium salts in the virgin Pinus rigida. However the specimen shows increasing CO over virgin Pinus rigida and It is supposed that toxicities depend on extents. Also, the specimen with ammonium sulfate showed both the lower total smoke release (TSR) and lower total smoke production (TSP) than those of virgin plate. Among the specimens, the sample treated with diammonium phosphate showed a strong inhibitory effect of combustion.

Influence of Organomodified Nanoclay on the Mechanical and Flammability behavior of Jute Fabric/Vinyl Ester Nanocomposites

  • Latif, M.;Prabhakar, M.N.;Nam, Gi-Beop;Lee, Dong-Woo;Song, Jung-Il
    • Composites Research
    • /
    • v.30 no.5
    • /
    • pp.303-309
    • /
    • 2017
  • Organo-montmorillonite (OMMT) has attracted much attention for fiber-reinforced polymer composites as a filler material due to high aspect ratio and low charge density. The present study focused on the fabrication of nanocomposites using Vinyl ester and Jute fabric as matrix and reinforcement respectively. The OMMT was uniformly dispersed in vinyl ester resin at 1, 2 and 3 wt%, loading through high speed mechanical stirrer at room temperature and further nanocomposites were manufactured through vacuum assisted resin infusion (VARI) technique. Effects of OMMT on the mechanical properties of vinyl ester/Jute composites were carefully investigated through tensile, bending and Izod impact tests, which revealed significant improvement in mechanical properties. The morphology of the nanocomposites after tensile test was investigated by SEM which affirmed that OMMT filled nanocomposites has improved interactions with the host matrix than the pure composites. Based on the nature and flame retardancy mechanism, the OMMT slightly improved the flammability property which was clearly explained by horizontal burning test.

Development of flame retardant materials utilizing recycled polypropylene and inorganic waste (재활용(再活用) 폴리프로필렌과 무기계(無機界) 폐기물(廢棄物)을 이용(利用)한 난연성(難燃性) 소재(素材) 개발(開發))

  • Chun, Byoung-Chul;Cho, Tae-Keun;Park, Hyun-Gue;Choi, Hyung-Joon;Chung, Yong-Chan;Jeon, Ho-Seok
    • Resources Recycling
    • /
    • v.16 no.4
    • /
    • pp.17-26
    • /
    • 2007
  • Inorganic shell powder waste was added to recycled polypropylene(COPP), and its effect on the mechanical properties and flammability was investigated. Compatibilizer(Polytail H) was added to improve mechanical properties of COPP/shell composites. Also three different flame retardants($Al_2O_3$, DBDPO, $Sb_2O_3$) were added to improve flammability. Experimental results indicated that addition of compatibilizer resulted in an improved mechanical properties, and especially impact strength approached that of 100 wt% COPP. Addition of flame retardant did not result in decreased mechanical properties. UL-94 flammability test indicated that COPP/shell composite did not show good flame retardancy, however, in the case of COPP/shell composites containing flame retardant showed good flammability. flammability was found $Sb_2O_3>Al_2O_3>DBDPO$ in this order. Finally, UL-94 V-0 grade was found in COPP/shell composite with $Al_2O_3$, compatibilizer, and 40 wt% shell, and COPP/shell composites with $Sb_2O_3$.

Preparation of EVA/Intumescent/Nano-Clay Composite with Flame Retardant Properties and Cross Laminated Timber (CLT) Application Technology (난연특성을 가지는 EVA/Intumescent/나노클레이 복합재료 제조 및 교호집성재(Cross Laminated Timber) 적용 기술)

  • Choi, Yo-Seok;Park, Ji-Won;Lee, Jung-Hun;Shin, Jae-Ho;Jang, Seong-Wook;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.1
    • /
    • pp.73-84
    • /
    • 2018
  • Recently, the importance of flame retardation treatment technology has been emphasized due to the increase in urban fire accidents and fire damage incidents caused by building exterior materials. Particularly, in the utilization of wood-based building materials, the flame retarding treatment technology is more importantly evaluated. An Intumescent system is one of the non-halogen flame retardant treatment technologies and is a system that realizes flame retardancy through foaming and carbonization layer formation. To apply the Intumescent system, composite material was prepared by using Ethylene vinyl acetate (EVA) as a matrix. To enhance the flame retardant properties of the Intumescent system, a nano-clay was applied together. Composite materials with Intumescent system and nano - clay technology were processed into sheet - like test specimens, and then a new structure of cross laminated timber with improved flame retardant properties was fabricated. In the evaluation of combustion characteristics of composite materials using Intumescent system, it was confirmed that the maximum heat emission was reduced efficiently. Depending on the structure attached to the surface, the CLT had two stages of combustion. Also, it was confirmed that the maximum calorific value decreased significantly during the deep burning process. These characteristics are expected to have a delayed combustion diffusion effect in the combustion process of CLT. In order to improve the performance, the flame retardation treatment technique for the surface veneer and the optimization technique of the application of the composite material are required. It is expected that it will be possible to develop a CLT structure with improved fire characteristics.