• Title/Summary/Keyword: impregnated carbons

Search Result 39, Processing Time 0.033 seconds

Vapor Phase Mercury Removal by Sulfur Impregnated Activated Carbons and Sulfur Impregnation Protocol

  • Lee, Si-Hyun;Cha, Sun-Young;Park, Yeong-Seong
    • Carbon letters
    • /
    • v.2 no.1
    • /
    • pp.37-43
    • /
    • 2001
  • Mercury has been identified as a potential health and environmental hazardous material. Activated carbon adsorption offers promising potential for the control of mercury emissions, and sulfur impregnated (sulfurized) activated carbons has been shown to be an effective sorbent for the removal of vapor phase $Hg{\circ}$ from sources. In this work, vapor phase mercury adsorption by sulfur impregnated activated carbons were investigated. Sulfur impregnated activated carbons were made by variation of impregnation temperature, and the comparison of adsorption characteristics with commercial virgin and sulfurized carbons were made. Factors affecting the adsorption capacity of virgin and sulfurized activated carbons such as pore characteristics, functional groups and sulfur impregnation conditions were discussed. It was found that the sulfur allotropes plays a critical role in adsorption of mercury vapor by sulfurized activated carbons.

  • PDF

Preparation of Novel Sorbents for Gas-phase Mercury Removal

  • Lee, Si-Hyun;Rhim, Young-Jun;Park, Young-Ok
    • Carbon letters
    • /
    • v.3 no.4
    • /
    • pp.187-191
    • /
    • 2002
  • In the present research, we prepared the activated carbon (AC) sorbents to remove gas-phase mercury. The mercury adsorption of virgin AC, chemically treated AC and fly ash was performed. Sulfur impregnated and sulfuric acid impregnated ACs were used as the chemically treated ACs. A simulated flue gas was made of SOx, NOx and mercury vapor in nitrogen balance. A reduced mercury adsorption capacity was obtained with the simulated gas as compared with that containing only mercury vapor in nitrogen. With the simulated gas, the sulfuric acid treated AC showed the highest performance, but it might have the problem of corrosion due to the emission of sulfuric acid. It was also found that the high sulfur impregnated AC also released a portion of sulfur at $140^{\circ}C$. Thus, it was concluded that the low sulfur impregnated AC was suitable for the treatment of flue gas in terms of stability and efficiency.

  • PDF

Evaluation of decontamination factor of radioactive methyl iodide on activated carbons at high humid conditions

  • Choi, Byung-Seon;Kim, Seon-Byeong;Moon, Jeikwon;Seo, Bum-Kyung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1519-1523
    • /
    • 2021
  • Radioactive iodine (131I) released from nuclear power plants has been a critical environmental concern for workers. The effective trapping of radioactive iodine isotopes from the off-gas stream generated from nuclear facilities is an important issue in radioactive waste treatment systems evaluation. Numerous studies on retaining methyl iodide (CH3I131) by impregnated activated carbons under the high content of moisture have been extensively studied so far. But there have been no good results on how to remove methyl iodide at high humid conditions up to now. A new challenge is to introduce other promising impregnating chemical agents that are able to uptake enough radioactive methyl iodide under high humid conditions. In order to develop a good removal efficiency to control radioiodine gas generated from a high humid process, activated carbons (ACs) impregnated with triethylene diamine (TEDA) and qinuclidine (QUID) were prepared. In addition, the removal efficiencies of the activated carbons (ACs) under humid conditions up to 95% RH were evaluated by applying the standard method specified in ASTM-D3808. Quinuclidine impregnated activated carbon showed a much higher decontamination factor above 1,000, which is enough to meet the regulation index for the iodine filters in nuclear power plants (NPPs).

($H_2S$ Adsorption Characteristics of $KIO_3$ Impregnated Activated Carbon (($KIO_3$ 첨착활성탄의 황화수소 흡착 성능평가)

  • Kim, Jun-Suk;Kim, Myung-Chan;Kang, Eun-Jin;Kim, Myung-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.72-79
    • /
    • 2003
  • The impregnated activated carbons were prepared by the incipient wetness method with the contents of $KIO_3$ varied from 1.0${\sim}$10 wt% as the impregnation material. The specific surface area and micropore volume of the rice hulls activated carbon were $2,600{\sim}2,800$ $m^2$/g and 1.1${\sim}$1.4 cc/g, respectively. With increasing the contents of impregnation materials, the surface area and micropore volume decreased by 3${\sim}$21%. However, The amounts of hydrogen sulfide adsorbed increased by 2.1${\sim}$2.8 times depending on the impregnation content. The optimum contents of $KIO_3$ were 2.4 wt%. Although the breakthrough time and adsorption capacity of hydrogen sulfide decreased with increasing temperature in the case of the unimpregnated activated carbons, they increased by 1.2${\sim}$ 3.2 times for the case of the impregnated activated carbons. The optimum aspect ratio(L/D) was 1.0 and the adsorption amount of hydrogen sulfide enhanced with increasing the gas flow rate. The regeneration temperature was determined as 400$^{\circ}C$ from the TGA experiment. The adsorption capacity of hydrogen sulfide with the impregnated activated carbon decreased gradually as the regeneration continued. The hydrogen sulfide adsorption amount of the regenerated activated carbon up to 4 times was still higher than that of the unimpregnated activated carbon.

Adsorption Characteristics of Activated Carbons According to Impregnation Concentrations and Inlet CO2 Gas Concentrations (함침농도와 CO2 가스 유입농도에 따른 활성탄의 흡착특성)

  • Lee, Dong-Hwan;Kam, Sang-Kyu;Lee, Song-Woo;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.19 no.12
    • /
    • pp.1403-1407
    • /
    • 2010
  • The adsorption characteristics of $CO_2$ gas on impregnated activated carbons with MEA (Mono-ethanolamine) and AMP (2-Amino 2-methyl 1-propanol) were studied to improve the adsorption ability of $CO_2$ gas on activated carbon. The equilibrium adsorption capacity of $CO_2$ gas was increased by increment of impregnation concentration up to 40 %, but decreased above 50 %. The adsorption capacity of activated carbon impregnated with AMP was higher than activated carbon impregnated with MEA. The breakthrough was fast according to increment of inlet concentration of $CO_2$ gas.

Impregnated Active Carbon-Shelf Life Studies and Its Evaluation Against Cyanogen Chloride with and without Canister

  • Singh, Beer;Saxena, Amit;Srivastava, Avanish Kumar;Dubey, Devendra Kumar;Gupta, Arvind Kumar
    • Carbon letters
    • /
    • v.8 no.4
    • /
    • pp.280-284
    • /
    • 2007
  • Samples of active carbon of $1150\;m^2/g$ surface area were impregnated with ammoniacal salts of copper, chromium and silver, with and without triethylenediamine. The samples of impregnated carbon were aged at $50^{\circ}C$, with and without 90% RH (relative humidity), for a little more than one year and chemically evaluated periodically. Initially copper (II) and chromium (VI) reduced very fast in the samples in humid atmosphere to the extent of 30% and 60% respectively in four months. These values were found to be unaffected by the presence of triethylenediamine (TEDA) indicating that the chemical did not retard the reduction process of chromium (VI) and copper (II). However, in the absence of humidity the reduction of the impregnants was significantly less (10-12%, w/w) in four months. It was quite evident; therefore, that the moisture was mainly responsible for the reduction of chromium (VI) and copper (II) species in impregnated carbons. The prolonged ageing of the samples with and without triethylenediamme after four months with and without humid atmosphere showed that the extent of reduction of chromium (VI) was very low, i.e. 5-10% and of copper (II) was 2-25%. Silver is not reduced due to carbon, as it remained unchanged in concentration on storage. The impregnated carbon samples (100 g) without triethylenediamine, which were aged at room temperature for 5 years in absence of humidity and unaged when evaluated against cyanogen chloride (CNCl) at a concentration of 4 mg/L and airflow rate of 30 lpm showed a high degree of protection (80- 110 minutes).

H2S Adsorption Characteristics of KOH Impregnated Activated Carbons (KOH 첨착 활성탄에서 황화수소의 흡착 특성)

  • Choi, Do-Young;Jang, Seong-Cheol;Gong, Gyeong-Tack;Ahn, Byoung-Sung;Choi, Dae-Ki
    • Applied Chemistry for Engineering
    • /
    • v.17 no.3
    • /
    • pp.280-285
    • /
    • 2006
  • Adsorption characteristics of $H_{2}S$ on KOH impregnated activated carbon were evaluated using dynamic adsorption method in a fixed bed. The pore properties, including BET's specific surface area, pore volume, pore size distribution, and mean pore diameter of these KOH impregnated activated carbons, were characterized from $N_{2}$ adsorption/desorption isotherms. Adsorption equilibrium data were correlated with Langmuir and Freundlich isotherms. The adsorption of $H_{2}S$ onto the KOH impregnated activated carbon is better fitted by the Langmuir isotherm. An increase in the content of oxygen affects the performance of KOH impregnated activated carbon to the greatest extent.

Adsorption Characteristics of CO2 on Activated Carbons Treated with Alkali-metal Salts (알칼리금속염으로 처리된 활성탄에 대한 CO2의 흡착특성)

  • Ryu, Dong Kwan;Kim, Sung Hyun
    • Applied Chemistry for Engineering
    • /
    • v.9 no.2
    • /
    • pp.286-293
    • /
    • 1998
  • Two methods were used to enhance the adsorption capacity of activated carbons. One is to impregnate activated carbons with chemical compounds which have a good affinity for $CO_2$. The other is to activate by heat-treating after impregnation with KOH on activated carbons(AC). The chemical compounds impregnated on AC were alkali metal, alkaline earth metal, and transition metal chlorides. The adsorption capacity of $CO_2$ on AC impregnated with these metals was less than that of pure AC. These compounds have not the chemical affinity for $CO_2$ and obstruct the micropore of AC. The experiment of breakthrough for $CO_2$ on AC impregnated with KOH showed the increase of the adsorbed amount of $CO_2$ in influent gases containing water vapor. This means that KOH adsorbes $CO_2$ gas. However, the adsorbents impregnated with KOH had not the reproducibility because of the production of $K_2CO_3$ by the reaction of KOH with $CO_2$. The amount of $CO_2$ adsorbed on the heat-treated AC at $800^{\circ}C$ increased with the amount of impregnation. The adsorption capacity of $CO_2$ was the largest when the ratio of weight of KOH to AC equal to 4. The isosteric heat of adsorption was calculated by the equation of Clausius-Clapeyron form adsorption capacity data of $CO_2$ for the temperature change. In addition, the characteristics of $CO_2$ breakthrough curve were surveyed for the change of flow rate and concentration.

  • PDF