• Title/Summary/Keyword: impregnated activated carbon

Search Result 129, Processing Time 0.025 seconds

Radon Removal Efficiency of Activated Carbon Filter from Coconut (코코넛 기반 활성탄 필터의 라돈 제거 효율)

  • Yun-Jin Ahn;Gi-Sub Kim;Tae-Hwan Kim;Sang-Rok Kim
    • Journal of radiological science and technology
    • /
    • v.46 no.2
    • /
    • pp.141-149
    • /
    • 2023
  • The Korea Institute of Radiological and Medical Sciences plans to produce 225Ac, a therapeutic radio-pharmaceutical for precision oncology, such as prostate cancer. Radon, a radioactive gas, is generated by radium, the target material for producing 225Ac. The radon concentration is expected to be about 2000 Bq·m-3. High-concentration radon-generating facilities must meet radioactive isotope emission standards by lowering the radon concentration. However, most existing studies concerning radon removal using activated carbon filters measured radon levels at concentrations lower than 1000 Bq·m-3. This study measured 222Rn removal of coconut-based activated carbon filter under a high radon concentration of about 2000 Bq·m-3. The 222Rn removal efficiency of activated carbon impregnated with triethylenediamine was also measured. As a result, the 222Rn removal amount of the activated carbon filter showed sufficient removal efficiency in a 222Rn concentration environment of about 2000 Bq·m-3. In addition, despite an expectation of low radon reduction efficiency of Triethylenediamine-impregnated activated carbon, it was difficult to confirm a significant difference in the results. Therefore, it is considered that activated carbon can be used as a radioisotope exhaust filter regardless of whether or not Triethylenediamine is impregnated. The results of this study are expected to be used as primary data when building an air purification system for radiation safety management in facilities with radon concentrations of about 2000 Bq·m-3.

H2S Adsorption Characteristics of KOH Impregnated Activated Carbons (KOH 첨착 활성탄에서 황화수소의 흡착 특성)

  • Choi, Do-Young;Jang, Seong-Cheol;Gong, Gyeong-Tack;Ahn, Byoung-Sung;Choi, Dae-Ki
    • Applied Chemistry for Engineering
    • /
    • v.17 no.3
    • /
    • pp.280-285
    • /
    • 2006
  • Adsorption characteristics of $H_{2}S$ on KOH impregnated activated carbon were evaluated using dynamic adsorption method in a fixed bed. The pore properties, including BET's specific surface area, pore volume, pore size distribution, and mean pore diameter of these KOH impregnated activated carbons, were characterized from $N_{2}$ adsorption/desorption isotherms. Adsorption equilibrium data were correlated with Langmuir and Freundlich isotherms. The adsorption of $H_{2}S$ onto the KOH impregnated activated carbon is better fitted by the Langmuir isotherm. An increase in the content of oxygen affects the performance of KOH impregnated activated carbon to the greatest extent.

Selective Removal of HCN and Aldehydes in Mainstream Smoke by Impregnated Activated Carbon and Functionalized Silica-gel (기능성 실리카겔과 첨착 활성탄에 의한 주류연 중 시안화수소와 알데히드의 선택적 흡착)

  • Lim Heejin;Shin Chang-Ho;Yang Burm-Ho;Hong Jin-Young;Ko Dongkyun;Lee Young-Tack
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.27 no.2
    • /
    • pp.171-177
    • /
    • 2005
  • Coconut based activated carbon and silica-gels were impregnated with 3-aminopropyltri ethoxysilan(APS) and N-(2-aminoethyl)-3-aminopropyl triethoxysilane (AEAPS) in order to investigate the effect of the amine group and the pore size of the supports on the removal of hydrogen cyanide(HCN) and aldehydes in mainstream smoke(MS). The physicochemical properties of the supports were analyzed by using thermal gravity analyzer(TGA), $N_2$ adsorption and desorption isotherms$(BET,\;N_2)$, and SEM-EDS. According to our experimental data, there was no significant difference in the delivery amount of HCN and aldehydes of non-functionalized silica-gels having meso-pores bigger than $20\AA$. In the case of silica-gels functionalized with APS(APS silica-gel), the delivery amounts of hydrogen cyanide(HCN) and aldehydes decreased with the increase of APS concentration. Silica-gel functionalized with AEAPS(AEAPS silica-gel) showed higher removal efficiency than that of APS silica-gels. The delivery amounts of HCN and aldehydes of activated carbon impregnated with APS and AEAPS increased with the increase of the APS and AEAPS concentrations. In accordance with the specific surface area analysis results, APS and AEAPS molecules decreased the specific surface area by blocking the micro-pores of the activated carbon. The volatile organic components removal efficiency by the micro-pores was higher than that of the amine group impregnated into the activated carbon.

The Effect of Potassium Hydroxide on the Porosity of Phenol Resin-based Activated Carbon Fiber

  • Jin, Hang-Kyo
    • Carbon letters
    • /
    • v.7 no.3
    • /
    • pp.161-165
    • /
    • 2006
  • Activated carbon fiber could be prepared at 973 K by catalytic activation using potassium hydroxide. Phenol resin fiber (Kynol) was impregnated with potassium hydroxide ethanol solution, carbonized and activated at 973 K, resulting in activated carbon fibers with different porosities. The potassium hydroxide accelerated the activation of the fiber catalytically to form narrow micropore preferentially in carbon dioxide atmosphere. The narrow micropore volume of 0.3~0.4 cc/g, total pore volume of 0.3~0.8 cc/g, mean pore width of 0.5~0.7 nm was obtained in the range of 20~50% burnoff.

  • PDF

Removal of Ammonia in Water using Acid-impregnated Activated Carbon and Dynamic Membrane System (산 첨착활성탄과 동적막 공정을 이용한 수중 암모니아 제거)

  • Choi, Won Kyung;Shin, Dong-Ho;Lee, Yong Taek
    • Applied Chemistry for Engineering
    • /
    • v.17 no.3
    • /
    • pp.310-316
    • /
    • 2006
  • In this study, activated carbon in a powder form was used to remove dissolved ammonia which causes a fouling smell in water. Since the adsorption capacity of common powder activated carbon is not high enough, we prepared powder activated carbon deposited on an acid solution to enhance the adsorption capacity. The acid-impregnated activated carbon was applied on the surface of porous fibril support ($10{\sim}50{\mu}m$) by which adsorption and separation processes take place simultaneously by varying effective pressure. As the result, the ammonia removal efficiency is above 60% in the mixing process which is 10~15% higher than general powder activated carbon. From the result of an experiment on the pure permeable test of a dynamic membrane, its transmittance is 400~700 LMH (liter per hour), indicating that the prepared membrane works as a microfiltration membrane. Therefore, it is expected that the membrane prepared in this way would improve the efficiency of water treatment than conventional membranes.

Surface Modification by Heat-treatment of Propellant Waste Impregnated ACF

  • Yoon, Keun-Sig;Pyo, Dae-Ung;Lee, Young-Seak;Ryu, Seung-Kon;Yang, Xiao Ping
    • Carbon letters
    • /
    • v.11 no.2
    • /
    • pp.131-136
    • /
    • 2010
  • Propellant waste was impregnated on the surface of activated carbon fiber and heat-treated at different temperature to introduce newly developed functional groups on the ACF surface. Functional groups of nitrogen and oxygen such as pyridine, pyridone, pyrrol, lacton and carboxyl were newly introduced on the surface of modified activated carbon fiber. The porosity, specific surface area, and morphology of those modified ACFs were changed as increasing the heat-treated temperature from 200 to $500^{\circ}C$. The optimum heat-treatment temperature was suggested to $500^{\circ}C$, because lower temperature given rise to the decrease of specific surface area and higher temperature resulted in the decrease of weight loss. Propellant waste can be used as an useful surface modifier to porous carbons.

A Study on the Preparation of GAC(Granular Activated Carbon) for BAC(Biological Activated Carbon) Process using Oak Wood (참나무를 이용한 BAC(Biological Activated Carbon) Process용 활성탄 제조에 관한 연구)

  • Choi, Jung-il;Lee, Sang-bong;Kim, Dong-Youn
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.6
    • /
    • pp.1037-1044
    • /
    • 2000
  • The objective of this study is the preparation of activated carbon for BAC(biological activated carbon). Prepared activated carbon was measured iodine adsorption(mg/g). methylene blue adsorption(mg/g), B.E.T($m^2/g$), PSD(Pore Size Distribution) and 'Picabiol' which in commercial activated carbon for BAC. Activation method for this study was a chemical activation used the phosphoric acid. In the method, two important factors affected activation characterized in preparation were temperature and impregnated phosphoric acid concentration. Activation temperature and impregnated phosphoric acid concentration were changed the $600{\sim}800^{\circ}C$ and 35~50wt% respectively. Activation time was fixed for 3 hour. Optimal activation temperature was $800^{\circ}C$ and impregnated phosphoric acid concentrations was about 50wt%. By the above condition specific surface area, iodine adsorption number and methylene blue adsorption number resulted $1643.3m^2/g$, 1093 mg/g, 445.6 mg/g, respectively.

  • PDF

Evaluation of decontamination factor of radioactive methyl iodide on activated carbons at high humid conditions

  • Choi, Byung-Seon;Kim, Seon-Byeong;Moon, Jeikwon;Seo, Bum-Kyung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1519-1523
    • /
    • 2021
  • Radioactive iodine (131I) released from nuclear power plants has been a critical environmental concern for workers. The effective trapping of radioactive iodine isotopes from the off-gas stream generated from nuclear facilities is an important issue in radioactive waste treatment systems evaluation. Numerous studies on retaining methyl iodide (CH3I131) by impregnated activated carbons under the high content of moisture have been extensively studied so far. But there have been no good results on how to remove methyl iodide at high humid conditions up to now. A new challenge is to introduce other promising impregnating chemical agents that are able to uptake enough radioactive methyl iodide under high humid conditions. In order to develop a good removal efficiency to control radioiodine gas generated from a high humid process, activated carbons (ACs) impregnated with triethylene diamine (TEDA) and qinuclidine (QUID) were prepared. In addition, the removal efficiencies of the activated carbons (ACs) under humid conditions up to 95% RH were evaluated by applying the standard method specified in ASTM-D3808. Quinuclidine impregnated activated carbon showed a much higher decontamination factor above 1,000, which is enough to meet the regulation index for the iodine filters in nuclear power plants (NPPs).

Enhancement of Efficiency of Activated Carbon Impregnated Chitosan for Carbon Dioxide Adsorption

  • Patkool, Chaiwat;Chawakitchareon, Petchporn;Anuwattana, Rewadee
    • Environmental Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.289-292
    • /
    • 2014
  • The effect of carbon dioxide ($CO_2$) on global warming is serious problem. The adsorption with solid sorbents is one of the most appropriate options. In this study, the most interesting adsorbent is granular activated carbon (GAC). It is suitable material for $CO_2$ adsorption because of its simple availability, many specific surface area, and low-cost material. Afterwards, GAC was impregnated with chitosan solution as impregnated granular activated carbon (CGAC) in order to improve the adsorption capacity of GAC. This research aims to compare the physical and chemical characteristics of GAC and CGAC. The experiment was carried out to evaluate the efficiency of $CO_2$ adsorption between GAC and CGAC. The results indicated that the iodine number of GAC and CGAC was 137.17 and 120.30 mg/g, respectively. The Brunauer-Emmett-Teller results (BET) of both GAC and CGAC show that specific surface area was 301.9 and $531.3m^2/g$, respectively; total pore volume was 0.16 and $0.29cm^3/g$, respectively; and mean diameter of pore was 2.18 and 2.15 nm, respectively. Finally, the $CO_2$ adsorption results of both GAC and CGAC in single column how the maximum adsorption capacity was 0.17 and 0.25 mol/kg, respectively; how degeneration time was 49.6 and 80.0 min, respectively; and how the highest efficiency of $CO_2$ adsorption was 91.92% and 91.19%, respectively.