Purpose - The purpose of this paper is to analyze the dynamic factors of the daily FX implied volatility based on the fractional integration methods focusing on long memory feature and structural changes. Design/methodology/approach - This paper uses the daily FX implied volatility data of the EUR-USD and the JPY-USD exchange rates. For the fractional integration analysis, this paper first applies the basic ARFIMA-FIGARCH model and the Local Whittle method to explore the long memory feature in the implied volatility series. Then, this paper employs the Adaptive-ARFIMA-Adaptive-FIGARCH model with a flexible Fourier form to allow for the structural changes with the long memory feature in the implied volatility series. Findings - This paper finds statistical evidence of the long memory feature in the first two moments of the implied volatility series. And, this paper shows that the structural changes appear to be an important factor and that neglecting the structural changes may lead to an upward bias in the long memory feature of the implied volatility series. Research implications or Originality - The implied volatility has widely been believed to be the market's best forecast regarding the future volatility in FX markets, and modeling the evolution of the implied volatility is quite important as it has clear implications for the behavior of the exchange rates in FX markets. The Adaptive-ARFIMA-Adaptive-FIGARCH model could be an excellent description for the FX implied volatility series
Journal of the Korean Society for Industrial and Applied Mathematics
/
제27권3호
/
pp.180-193
/
2023
Approximating the implied volatilities and estimating the model parameters are important topics in quantitative finance. This study proposes an approximation formula for short-maturity near-the-money implied volatilities in stochastic volatility models. A general second-order nonlinear PDE for implied volatility is derived in terms of time-to-maturity and log-moneyness from the Feyman-Kac formula. Using regularity conditions and the Taylor expansion, an approximation formula for implied volatility is obtained for short-maturity nearthe-money call options in two stochastic volatility models: Heston model and SABR model. In addition, we proposed a novel numerical method to estimate model parameters. This method reduces the number of model parameters that should be estimated. Generating sample data on log-moneyness, time-to-maturity, and implied volatility, we estimate the model parameters fitting the sample data in the above two models. Our method provides parameter estimates that are close to true values.
In this study we conduct a specification test of at-the-money option volatility. Results show that the implied volatility estimate recovered from the Black-Scholes European option pricing model is nearly indistinguishable from the implied volatility estimate obtained from the Barone-Adesi and Whaley's American option pricing model. This study also investigates whether the use of Black-Scholes implied volatility estimates in American put pricing model significantly affect the prediction the prediction of American put option prices. Results show that, at long as the possibility of early exercise is carefully controlled in calculation of implied volatilities prediction of American put prices is not significantly distorted. This suggests that at-the-money option implied volatility estimates are robust across option pricing model.
In this paper, we introduce the implied volatility from Black-Scholes model and suggest a model for constructing implied volatility surfaces by using the two-dimensional cubic (bi-cubic) spline. In order to utilize a spline method, we acquire grid (knot) points. To this end, we first extract implied volatility curves weighted by trading contracts from market option data and calculate grid points from the extracted curves. At this time, we consider several conditions to avoid arbitrage opportunity. Then, we establish an implied volatility surface, making use of the two-dimensional cubic spline method with previously estimated grid points. The method is shown to satisfy several properties of the implied volatility surface (smile, skew, and flattening) as well as avoid the arbitrage opportunity caused by simple match with market data. To show the merits of our proposed method, we conduct simulations on market data of S&P500 index European options with reasonable and acceptable results.
A lot of researches have been conducted to estimate the volatility smile effect shown in the option market. This paper proposes a method to approximate an implied volatility function, given noisy real market option data. To construct an implied volatility function, we use Gaussian Processes (GPs). Their output values are implied volatilities while moneyness values (the ratios of strike price to underlying asset price) and time to maturities are as their input values. To show the performances of our proposed method, we conduct experimental simulations with Korean Equity-Linked Warrant (ELW) market data as well as toy data.
Purpose - The purpose of this paper is to shed light on the importance of the slope and curvature of the volatility curve implied in option prices in the KOSPI 200 options index. A number of studies examine the implied volatility curve, however, these usually focus on cross-sectional characteristics such as the volatility smile. Contrary to previous studies, we focus on time-series characteristics; we investigate correlation dynamics among slope, curvature, and level of the implied volatility curve to capture market information embodied therein. Our study may provide useful implications for investors to utilize current market expectations in managing portfolios dynamically and efficiently. Research design, data, and methodology - For our empirical purpose, we gathered daily KOSPI200 index option prices executed at 2:50 pm in the Korean Exchange distribution market during the period of January 2, 2004 and January 31, 2012. In order to measure slope and curvature of the volatility curve, we use approximated delta distance; the slope is defined as the difference of implied volatilities between 15 delta call options and 15 delta put options; the curvature is defined as the difference between out-of-the-money (OTM) options and at-the-money (ATM) options. We use generalized method of moments (GMM) and the seemingly unrelated regression (SUR) method to verify correlations among level, slope, and curvature of the implied volatility curve with statistical support. Results - We find that slope as well as curvature is positively correlated with volatility level, implying that put option prices increase in a downward market. Further, we find that curvature and slope are positively correlated; however, the relation is weakened at deep moneyness. The results lead us to examine whether slope decreases monotonically as the delta increases, and it is verified with statistical significance that the deeper the moneyness, the lower the slope. It enables us to infer that when volatility surges above a certain level due to any tail risk, investors would rather take long positions in OTM call options, expecting market recovery in the near future. Conclusions - Our results are the evidence of the investor's increasing hedging demand for put options when downside market risks are expected. Adding to this, the slope and curvature of the volatility curve may provide important information regarding the timing of market recovery from a nosedive. For financial product distributors, using the dynamic relation among the three key indicators of the implied volatility curve might be helpful in enhancing profit and gaining trust and loyalty. However, it should be noted that our implications are limited since we do not provide rigorous evidence for the predictability power of volatility curves. Meaning, we need to verify whether the slope and curvature of the volatility curve have statistical significance in predicting the market trough. As one of the verifications, for instance, the performance of trading strategy based on information of slope and curvature could be tested. We reserve this for the future research.
S&P 500과 RUSSELL 2000, DJIA, Nasdaq 100 4가지 미국 주가지수의 실현변동성(realized volatility, RV)을 예측하는데 있어서 사람들의 관심 지표로 삼을 수 있는 인터넷 검색량(search volume, SV) 지수와 내재변동성(implied volatility, IV)를 이용하여 LSTM 딥러닝(deep learning) 방법으로 RV의 예측력을 높이고자하였다. SV을 이용한 LSTM 방법의 실현변동성 예측력이 기존의 기본적인 vector autoregressive (VAR) 모형, vector error correction (VEC)보다 우수하였다. 또한, 최근 제안된 RV와 IV의 공적분 관계를 이용한 vector error correction heterogeneous autoregressive (VECHAR) 모형보다도 전반적으로 예측력이 더 높음을 확인하였다.
블랙숄즈모형에서 옵션가격을 결정하는 변수 중 기초자산의 변동성은 현재 시점에서는 알 수 없고, 미래시점에 실현된 변동성을 사후에야 알 수 있다. 하지만 옵션이 거래되는 시장에서 관찰되는 가격이 있기 때문에 가격에 내재된 변동성을 역으로 산출한 내재변동성은 현재 시점에 구할 수 있다. 내재변동성을 구하기 위해서는 옵션가격과, 블랙숄즈 모형의 변동성을 제외한 옵션가격결정변수인 기초자산가격, 무위험이자율, 배당률, 행사가격, 잔존기간이 필요하다. 블랙숄즈모형의 변동성은 고정된 상수이나, 내재변동성 산출시 행사가격에 따라 변동성이 다르게 산출되는 변동성스마일현상을 보이기도 한다. 따라서 내재변동성 산출시 옵션 단일 종목이 아닌 시장전반의 변동성을 감안하는 것이 필요하다고 판단하여 본 연구에서는 V-KOSPI지수도 설명변수로 추가하였다. 머신러닝기법 중 지도학습방법을 사용하였으며, Linear Regression 계열, Tree 계열, SVR과 KNN 알고리즘 및 딥뉴럴네트워크로 학습 및 예측하였다. Training성능은 Decision Tree모형이 99.9%로 가장 높았고 Test성능은 Random Forest 알고리즘이 96.9%로 가장 높았다.
In this paper, we review widely used methods to extract local volatility surfaces (LVSs) from implied volatility surfaces (IVSs) and suggest a model averaging method for constructing implied and local volatility surfaces weighted by trading volumes. It makes use of model averaging method by means of bandwidth priors, and then produces a robust LVS estimation. The method is shown to provide the information about the confidence interval of estimators as well as a rather less variable weighted mean value for the IVS and LVS. To show the merits of our proposed method, we conduct simulations on equity-linked warrants (ELWs) with reasonable and acceptable results.
Kim, Nam-Hyoung;Jung, Kyu-Hwan;Lee, Jae-Wook;Han, Gyu-Sik
Industrial Engineering and Management Systems
/
제10권1호
/
pp.84-94
/
2011
In this paper, we propose a method to provide the distribution of option price under local volatility model when market-provided implied volatility data are given. The local volatility model is one of the most widely used smile-consistent models. In local volatility model, the volatility is a deterministic function of the random stock price. Before estimating local volatility surface (LVS), we need to estimate implied volatility surfaces (IVS) from market data. To do this we use local polynomial smoothing method. Then we apply the Dupire formula to estimate the resulting LVS. However, the result is dependent on the bandwidth of kernel function employed in local polynomial smoothing method and to solve this problem, the proposed method in this paper makes use of model averaging approach by means of bandwidth priors, and then produces a robust local volatility surface estimation with a confidence interval. After constructing LVS, we price barrier option with the LVS estimation through Monte Carlo simulation. To show the merits of our proposed method, we have conducted experiments on simulated and market data which are relevant to KOSPI200 call equity linked warrants (ELWs.) We could show by these experiments that the results of the proposed method are quite reasonable and acceptable when compared to the previous works.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.