• Title/Summary/Keyword: implementation algorithm

Search Result 4,233, Processing Time 0.033 seconds

End-to-end Delay Analysis and On-line Global Clock Synchronization Algorithm for CAN-based Distributed Control Systems (CAN 기반 분산 제어시스템의 종단 간 지연 시간 분석과 온라인 글로벌 클럭 동기화 알고리즘 개발)

  • Lee, Hee-Bae;Kim, Hong-Ryeol;Kim, Dae-Won
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.677-680
    • /
    • 2003
  • In this paper, the analysis of practical end-to-end delay in worst case is performed for distributed control system considering the implementation of the system. The control system delay is composed of the delay caused by multi-task scheduling of operating system, the delay caused by network communication, and the delay caused by the asynchronous between them. Through simulation tests based on CAN(Controller Area Network), the proposed end-to-end delay in worst case is validated. Additionally, online clock synchronization algorithm is proposed here for the control system. Through another simulation test, the online algorithm is proved to have better performance than offline one in the view of network bandwidth utilization.

  • PDF

A Study on the Weavingless Arc Sensor System in GMA Welding (I) -Implementation of Weld Seam Tracking Algrithm- (GMA 용접에서 강제적인 위빙이 없는 아크센서 시스템에 관한 연구 (I) -용접선 추적 알고리즘의 구현-)

  • 안재현;김재웅
    • Journal of Welding and Joining
    • /
    • v.16 no.3
    • /
    • pp.44-54
    • /
    • 1998
  • In this study a new arc sensor algorithm for automatic weld seam tracking was proposed, which uses the relative welding current variation according to the tip-to-workpiece distance in GMA welding. Since the new developed arc sensor algorithm is not sensitive to unstable factors of arc signal, the system is expected to get rid of the problems of already existing arc sensor system which include the difficulty of modeling the process for various welding conditions and limitation of application to thick plate welding. Thus the system is applicable not only to thick plate welding but also to thin plate welding. To implement the new arc sensor algorithm the system parameters which include sampling time, averaging range, weighting factor of moving averaging, basic compensation time, and basic compensation distance were determined by experimental analysis. Consequently this system has shown the successful tracking capability for the various welding conditions.

  • PDF

Enhanced Pulse Protocol RFID Reader Anti-collision Algorithm using Slot Occupied Probability in Dense Reader Environment

  • Song, In-Chan;Fan, Xiao;Chang, Kyung-Hi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.2 no.6
    • /
    • pp.299-311
    • /
    • 2008
  • The Radio Frequency IDentification (RFID) system is a contactless automatic identification system, which comprises readers and tags. In RFID systems, a reader collision occurs when there is interference in communication between one reader and the tags, due to the signals from other readers. The reader collision problem is considered as the fundamental problem affecting high density RFID reader installations. In this paper, we analyze the existing reader anti-collision algorithms. We also propose a pulse protocol-based reader anti-collision algorithm using slot occupied probability (SOP). The implementation of this improvement is simple, yet it effectively mitigates most reader collisions in dense reader mode, as shown in our simulation. That is, the proposed algorithm reduces the identification time, and increasesthe system throughput and system efficiency compared with the conventional reader anti-collision algorithms.

Development of an Extended EDS Algorithm for CAN-based Real-Time System

  • Lee, Byong-Hoon;Kim, Dae-Won;Kim, Hong-Ryeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.60.3-60
    • /
    • 2001
  • Usually the static scheduling algorithms such as DMS(Deadline Monotonic Scheduling) or RMS(Rate Monotonic Scheduling) are used for CAN scheduling due to its ease with implementation. However, due to their inherently low utilization of network media, some dynamic scheduling approaches have been studied to enhance the utilization. In case of dynamic scheduling algorithms, two considerations are needed. The one is a priority inversion due to rough deadline encoding into stricted arbitration fields of CAN. The other is an arbitration delay due to the non-preemptive feature of CAN. In this paper, an extended algorithm is proposed from an existing EDS(Earliest Deadline Scheduling) approach of CAN scheduling algorithm having a solution to the priority inverstion ....

  • PDF

RFID backward channel protection scheme by Partial Encryption scheme based on SEED (SEED 기반의 부분 암호화 기법을 이용한 RFID 백워드 채널 보호 기법)

  • Kim, Sung-Jin;Park, Seok-Cheon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.1
    • /
    • pp.215-222
    • /
    • 2008
  • In this paper, we analyse eavesdrop problem of existing RFID security scheme and proposed improved SEEB algorithm for RFID security. we suggest partial round process and security in SEED algorithm. Existing scheme has vulnerability of security and implementation so far from realization. Therefore In our paper, we proposed new scheme using modified SEED algorithm for backward channel protection.

A Study on the Extraction of Linear Features from Satellite Images and Automatic GCP Filing (위성영상의 선형특징 추출과 이를 이용한 자동 GCP 화일링에 관한 연구)

  • 김정기;강치우;박래홍;이쾌희
    • Korean Journal of Remote Sensing
    • /
    • v.5 no.2
    • /
    • pp.133-145
    • /
    • 1989
  • This paper describes an implementation of linear feature extraction algorithms for satellite images and a method of automatic GCP(Ground Control Point) filing using the extracted linear feature. We propose a new linear feature extraction algorithm which uses magnitude and direction information of edges. The result of applying the proposed algorithm to satellite images are presented and compared with those of the other algorithms. By using the proposed algorithm, automatic GCP filing was successfully performed.

An Implementation of the DEVS Formalism on a Parallel Distributed Environment (병렬 분산 환경에서의 DEVS 형식론의 구현)

  • 성영락
    • Journal of the Korea Society for Simulation
    • /
    • v.1 no.1
    • /
    • pp.64-76
    • /
    • 1992
  • The DEVS(discrete event system specificaition) formalism specifies a discrete event system in a hierarchical, modular form. DEVSIM++ is a C++based general purpose DEVS abstract simulator which can simulate systems modeled by the DEVS formalism in a sequential environment. This paper describes P-DEVSIM++which is a parallel version of DEVSIM++ . In P-DEVSIM++, the external and internal event of DEVS models can by processed in parallel. For such processing, we propose a parallel, distributed optimistic simulation algorithm based on the Time Warp approach. However, the proposed algorithm localizes the rollback of a model within itself, not possible in the standard Time Warp approach. An advantage of such localization is that the simulation time may be reduced. To evaluate its performance, we simulate a single bus multiprocessor architecture system with an external common memory. Simulation result shows that significant speedup is made possible with our algorithm in a parallel environment.

  • PDF

Pliable regression spline estimator using auxiliary variables

  • Oh, Jae-Kwon;Jhong, Jae-Hwan
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.5
    • /
    • pp.537-551
    • /
    • 2021
  • We conducted a study on a regression spline estimator with a few pre-specified auxiliary variables. For the implementation of the proposed estimators, we adapted a coordinate descent algorithm. This was implemented by considering a structure of the sum of the residuals squared objective function determined by the B-spline and the auxiliary coefficients. We also considered an efficient stepwise knot selection algorithm based on the Bayesian information criterion. This was to adaptively select smoothly functioning estimator data. Numerical studies using both simulated and real data sets were conducted to illustrate the proposed method's performance. An R software package psav is available.

AN EFFICIENT ALGORITHM FOR EVALUATION OF OSCILLATORY INTEGRALS HAVING CAUCHY AND JACOBI TYPE SINGULARITY KERNELS

  • KAYIJUKA, IDRISSA;EGE, SERIFE M.;KONURALP, ALI;TOPAL, FATMA S.
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.1_2
    • /
    • pp.267-281
    • /
    • 2022
  • Herein, an algorithm for efficient evaluation of oscillatory Fourier-integrals with Jacobi-Cauchy type singularities is suggested. This method is based on the use of the traditional Clenshaw-Curtis (CC) algorithms in which the given function is approximated by the truncated Chebyshev series, term by term, and the oscillatory factor is approximated by using Bessel function of the first kind. Subsequently, the modified moments are computed efficiently using the numerical steepest descent method or special functions. Furthermore, Algorithm and programming code in MATHEMATICA® 9.0 are provided for the implementation of the method for automatic computation on a computer. Finally, selected numerical examples are given in support of our theoretical analysis.