• Title/Summary/Keyword: implementation algorithm

Search Result 4,233, Processing Time 0.038 seconds

Sensor placement optimization in structural health monitoring using distributed monkey algorithm

  • Yi, Ting-Hua;Li, Hong-Nan;Zhang, Xu-Dong
    • Smart Structures and Systems
    • /
    • v.15 no.1
    • /
    • pp.191-207
    • /
    • 2015
  • Proper placement of sensors plays a key role in construction and implementation of an effective structural health monitoring (SHM) system. This paper proposes a novel methodology called the distributed monkey algorithm (DMA) for the optimum design of SHM system sensor arrays. Different from the existing algorithms, the dual-structure coding method is adopted for the representation of design variables and the single large population is partitioned into subsets and each subpopulation searches the space in different directions separately, leading to quicker convergence and higher searching capability. After the personal areas of all subpopulations have been finished, the initial optimal solutions in every subpopulation are extracted and reordered into a new subpopulation, and the harmony search algorithm (HSA) is incorporated to find the final optimal solution. A computational case of a high-rise building has been implemented to demonstrate the effectiveness of the proposed method. Investigations have clearly suggested that the proposed DMA is simple in concept, few in parameters, easy in implementation, and could generate sensor configurations superior to other conventional algorithms both in terms of generating optimal solutions as well as faster convergence.

Implementation of Master Changing Algorithm between Nodes in a General Electric Vehicle Network (일반 전동차량 네트워크의 노드간 MASTER 전환 알고리즘 구현)

  • Yeon, Jun Sang;Yang, Oh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.3
    • /
    • pp.65-70
    • /
    • 2017
  • This paper presents the implementation for the master changing algorithm between nodes in a general electric vehicle. The packet processing method based on the unique network method of an electric vehicle is that the method of processing a communication packet has the priority from the node of a vehicle installed at both ends. An important factor in deciding master or slave in a train is that the request data, the status data, and transmits or control codes of sub-devices are controlled from the node which master becomes. If the request data or the status data is transmitted from the non- master side, it is very important that only one of the devices of both stages be master since the data of the request data may collide with each other. This paper proposes an algorithm to select master or slave depending on which vehicle is started first, which node is master or slave, and whether the vehicle key is operation. Finally experimental results show the stable performance and effectiveness of the proposed algorithm.

  • PDF

Implementation of a Web-Based Intelligent Decision Support System for Apartment Auction (아파트 경매를 위한 웹 기반의 지능형 의사결정지원 시스템 구현)

  • Na, Min-Yeong;Lee, Hyeon-Ho
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.11
    • /
    • pp.2863-2874
    • /
    • 1999
  • Apartment auction is a system that is used for the citizens to get a house. This paper deals with the implementation of a web-based intelligent decision support system using OLAP technique and data mining technique for auction decision support. The implemented decision support system is working on a real auction database and is mainly composed of OLAP Knowledge Extractor based on data warehouse and Auction Data Miner based on data mining methodology. OLAP Knowledge Extractor extracts required knowledge and visualizes it from auction database. The OLAP technique uses fact, dimension, and hierarchies to provide the result of data analysis by menas of roll-up, drill-down, slicing, dicing, and pivoting. Auction Data Miner predicts a successful bid price by means of applying classification to auction database. The Miner is based on the lazy model-based classification algorithm and applies the concepts such as decision fields, dynamic domain information, and field weighted function to this algorithm and applies the concepts such as decision fields, dynamic domain information, and field weighted function to this algorithm to reflect the characteristics of auction database.

  • PDF

Speed Optimized Implementation of HUMMINGBIRD Cryptography for Sensor Network

  • Seo, Hwa-Jeong;Kim, Ho-Won
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.6
    • /
    • pp.683-688
    • /
    • 2011
  • The wireless sensor network (WSN) is well known for an enabling technology for the ubiquitous environment such as real-time surveillance system, habitat monitoring, home automation and healthcare applications. However, the WSN featuring wireless communication through air, a resource constraints device and irregular network topology, is threatened by malicious nodes such as eavesdropping, forgery, illegal modification or denial of services. For this reason, security in the WSN is key factor for utilizing the sensor network into the commercial way. There is a series of symmetric cryptography proposed by laboratory or industry for a long time. Among of them, recently proposed HUMMINGBIRD algorithm, motivated by the design of the well-known Enigma machine, is much more suitable to resource constrained devices, including smart card, sensor node and RFID tags in terms of computational complexity and block size. It also provides resistance to the most common attacks such as linear and differential cryptanalysis. In this paper, we implements ultra-lightweight cryptography, HUMMINGBIRD algorithm into the resource constrained device, sensor node as a perfectly customized design of sensor node.

Efficient Parallel Block-layered Nonbinary Quasi-cyclic Low-density Parity-check Decoding on a GPU

  • Thi, Huyen Pham;Lee, Hanho
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.3
    • /
    • pp.210-219
    • /
    • 2017
  • This paper proposes a modified min-max algorithm (MMMA) for nonbinary quasi-cyclic low-density parity-check (NB-QC-LDPC) codes and an efficient parallel block-layered decoder architecture corresponding to the algorithm on a graphics processing unit (GPU) platform. The algorithm removes multiplications over the Galois field (GF) in the merger step to reduce decoding latency without any performance loss. The decoding implementation on a GPU for NB-QC-LDPC codes achieves improvements in both flexibility and scalability. To perform the decoding on the GPU, data and memory structures suitable for parallel computing are designed. The implementation results for NB-QC-LDPC codes over GF(32) and GF(64) demonstrate that the parallel block-layered decoding on a GPU accelerates the decoding process to provide a faster decoding runtime, and obtains a higher coding gain under a low $10^{-10}$ bit error rate and low $10^{-7}$ frame error rate, compared to existing methods.

Development and Implementation of Algebraic Elimination Algorithm for the Synthesis of 5-SS Spatial Seven-bar Motion Generator (5-SS 공간 7절 운동생성기 합성을 위한 대수적 소거 알고리듬의 개발과 구현)

  • Lee, Tae-Yeong;Sim, Jae-Gyeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.225-231
    • /
    • 2000
  • Dimensional synthesis of planar and spatial mechanisms mostly requires solution-finding, procedure for a system of polynomial equations. In case the system is nonlinear, numerical techniques like Newton-Raphson are often used. But there are no logical ways for finding all possible solutions in such iterative methods. In this paper, algebraic elimination is used to get all solutions for the synthesis of 5-SS spatial mechanism with seven prescribed positions. The proposed algorithm is more suitable for computer implementation and takes less time than existing one. Two numerical examples are given to demonstrate the implemented algorithm.

Implementation of Real Time 3 channel Transmission System Using ECG Data Compression Algorithm by Max-Min Slope Update (최대 및 최소 기울기 갱신에 의한 ECG 압축 알고리듬을 이용한 실시간 3채널 전송시스템 구현)

  • 조진호;김명남
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.3
    • /
    • pp.271-278
    • /
    • 1995
  • An ECG data compression algorithM using max-min slope update is proposed and a real time 3 channel ECG transmission system is implemented using the proposed algorithm. In order to effectively compress ECG data, we compare a threshold value with the max-min slope difference (MMSD) which is updated at each sample values. If this MMSD value is smaller than the threshold value, then the data is compressed. Conversely, when the MMSD value is larger than threshold value, the data is transmitted after storing the value and the length between the data which is beyond previous threshold level. As a result, it can accurately compress both the region of QRS, P, and T wave that has fast-changing and the region of the base line that slope is changing slow. Therefore, it Is possible to enhance the compression rate and the percent roms difference. In addition, because of the simplicity, this algorithm is more suitable for real-time implementation.

  • PDF

Implementation of Vector control for induction motor using the AC-AC matrix converter (교류-교류 행렬변환기를 이용한 유도전동기의 벡터제어 구현)

  • Kim, Woo-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.1
    • /
    • pp.3-10
    • /
    • 2003
  • Application of matrix converter to vector control of induction motor using simplified Venturini algorithm which is capable of achieving the maximum output voltage is developed. This algorithm simplifies the control algorithm and therefor reduces the digital implementation time. Matrix converter is used as voltage-referenced voltage fed vector controlled induction motor drive. This paper describes the performance of vector controlled induction motor with four quadrant capability employing a matrix converter power circuit. The advantage of this system over the conventional rectifier-inverter arrangement are capability for regeneration into the utility, sinusoidal supply currents and minimum passive components. The steady-state and transient performance of the induction motor drive under the vector control technique is demonstrate with simulation and experiment results.

  • PDF

Design of an Initial Fine Alignment Algorithm for Satellite Launch Vehicles

  • Song, Eun-Jung;Roh, Woong-Rae;Kim, Jeong-Yong;Oh, Jun-Seok;Park, Jung-Ju;Cho, Gwang-Rae
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.3
    • /
    • pp.184-192
    • /
    • 2010
  • In this paper, an initial fine alignment algorithm, which is developed for the strap-down inertial navigation systems of satellite launch vehicles, is considered. For fast and accurate alignment, a simple closed-loop estimation algorithm using a proportional-integral controller is introduced. Through computer simulation for the sway condition in the launch pad, it is shown that a simple filter structure can guarantee fast computational speed that is adequate for real-time implementation as well as the required alignment accuracy and robustness. In addition, its implementation results are presented for the Naro-1 flight test.

Practical Implementation of Maximum Power Tracking Based Short-Current Pulse Method for Thermoelectric Generators Systems

  • Yahya, Khalid;Bilgin, Mehmet Zeki;Erfidan, Tarik
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.1201-1210
    • /
    • 2018
  • The applications of thermoelectric generators (TEGs) have received a lot of attention both in terms of harvesting waste thermal energy and the need for multi-levels of power. It is critical to track the optimum electrical operating point using DC to DC converters controlled by a pulse that is generated through a maximum power point tracking algorithm (MPPT). In this paper, the hardware implementation of a short-current pulse algorithm has been demonstrated under steady stated and transient conditions. In addition, the MPPT algorithm has been proposed, which is one of the most effective and applicable algorithms for obtaining the maximum power point of TEGs. During this study, the proposed prototype has been validated both analytically and experimentally. It has also demonstrated successful performance, which highlights the claimed advantages of the proposed MPPT solution.