• 제목/요약/키워드: implant size

검색결과 293건 처리시간 0.024초

백서두개골 결손부에서 Escherichia coli 발현 시스템으로 생산된 rhBMP-2의 골형성 효과 (Effect of rhBMP-2 produced by Escherichia coli expression system on bone formation in rat calvarial defects)

  • 권석훈;임현창;최경희;김민수;이지현;정의원;윤정호;김창성;최성호;조규성
    • Journal of Periodontal and Implant Science
    • /
    • 제39권1호
    • /
    • pp.77-86
    • /
    • 2009
  • Purpose: Recombinant human bone morphogenetic protein-2(rhBMP-2) has been evaluated as potential candidates for periodontal and bone regenerative therapy. In spite of good prospects in BMP applications, there is economically unavailable for clinical use in dental area. The purpose of this study was to evaluate the osteogenic effect of rhBMP-2 produced by E.coli expression system. Materials and methods: Eight-mm critical-size calvarial defects were created in 48 male Sprague-Dawley rats. The animals were divided into 6 groups of 8 animals each. Each group received one of the following: Negative control(sham-surgery control), positive control(absorbable collagen sponge(ACS) alone) and experimental(ACS loaded with rhBMP-2). Defects were evaluated by histologic and histometric parameters following 2- and 8-week healing intervals. Results: The experimental group showed significant defect closure at 2 and 8weeks than the sham surgery and positive control groups. Moreover, the experimental group showed significantly greater new bone and augmented area than the other groups at both 2 and 8weeks. Conclusion: rhBMP-2 produced by E.coli expression system may be effective for bone regeneration.

새롭게 개발된 비정질의 Calcium Phosphate가 백서두개골의 골재생에 미치는 영향 (The effects of novel biodegradable amorphous Calcium Phosphate on bone regeneration in rat calvarial defects)

  • 최정유;채경준;김창성;이용근;조규성;채중규;김종관;최성호
    • Journal of Periodontal and Implant Science
    • /
    • 제37권4호
    • /
    • pp.871-879
    • /
    • 2007
  • Purpose: The purpose of this study was to evaluate the bone regeneration of novel biodegradable amorphous calcium phosphate. Materials and Method: An 8-mm, calvarial, critical-size osteotomy defect was created in each of 20 male Sprague-Dawley rats(weight $250{\sim}300g$). The animals were divided into two groups of 10 animals each and allowed to heal for 2 weeks(10 rats). The first group was the control group and the other group was the experimental group which received the novel biodegradable calcium phosphate. Results: The healing of the calvarium in the control group was uneventful. The histologic results showed little bone formation in the control group. The experimental group which received the novel biodegradable calcium phosphate showed a normal wound healing. There were a lot of new bone formation around the biomaterial in 2 weeks. The bone formation increased in 8 weeks when compared to 2 weeks and there was a significant bone increase as well(P<0.01). The nobel biodegradable calcium phosphate showed statistical significance when compared to the control group (P<0.05). The novel biodegradable calcium phosphate in 8 weeks showed a significant increase in bone formation when compared to 2 weeks $(40.4{\pm}1.6)$(%). The biodegradable calcium phosphate which is made from mixing calcium phosphate glass(CPG), NaCO and NaOH solution, is biocompatible, osteoconductive and has a high potency of bone formation. Conclusion: We can conclude that the novel biodegradable calcium phosphate can be used as an efficient bone graft material for its biodegradability and osteoconductivity.

EFFECTS OF SURFACE ROUGHNESS AND MULTILAYER COATING ON THE CORROSION RESISTANCE OF Ti-6Al-4V ALLOY

  • Ko, Yeong-Mu;Choe, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2003년도 추계학술발표회초록집
    • /
    • pp.134-135
    • /
    • 2003
  • The dental implant materials required good mechanical properties, such as fatigue strength, combined with a high resistance to corrosion. For increasing fatigue resistance and delaying onset of stress corrosion cracking, shot peening has been used for > 50 years to extend service life of metal components. However, there is no information on the electrochemical behavior of shot peened and hydroxyapatite(HA) coated Ti-6Al-4V alloys. To increase fatigue strength, good corrosion resistance, and biocompatibility, the electrochemical characteristics of Ti/TiN/HA coated and shot peened Ti-6Al-4V alloys by electron beam physical vapor deposition(EB-PVD) have been researched by various electrochemical method in 0.9%NaCl. Ti-6Al-4V alloys were prepared under the condition of hydrogen and vacuum arc furnace. The produced materials were quenched at 1000$^{\circ}C$ under high purity dried Ar atmosphere and were hold at 500$^{\circ}C$ for 2 hrs to achieve the fatigue strength(1140㎫) of materials. Ti-6Al-4V alloys were prepared under the condition of hydrogen and vacuum arc furnace. Shot peening(SP) and sand blasting treatment was carried out for 1, 5, and 10min. On the surface of Ti-6Al-4V alloys using the steel balls of 0.5mm and alumina sand of 40$\mu\textrm{m}$ size. Ti/TiN/HA multilayer coatings were carried out by using electron-beam deposition method(EB-PVD) as shown Fig. 1. Bulk Ti, powder TiN and hydroxyapatite were used as the source of the deposition materials. Electrons were accelerated by high voltage of 4.2kV with 80 - 120mA on the deposition materials at 350$^{\circ}C$ in 2.0 X 10-6 torr vacuum. Ti/TiN/HA multilayer coated surfaces and layers were investigated by SEM and XRD. A saturated calomel electrode as a reference electrode, and high density carbon electrode as a counter electrode, were set according to ASTM GS-87. The potentials were controlled at a scan rate of 100 mV/min. by a potentiostat (EG&G Co.273A) connected to a computer system. Electrochemical tests were used to investigate the electrochemical characteristics of Ti/TiN/HA coated and shot peened materials in 0.9% NaCl solution at 36.5$^{\circ}C$. After each electrochemical measurement, the corrosion surface of each sample was investigated by SEM.

  • PDF

Fe3O4 magnetic nanoparticles provide a novel alternative strategy for Staphylococcus aureus bone infection

  • Youliang, Ren;Jin, Yang;Jinghui, Zhang;Xiao, Yang;Lei, Shi;Dajing, Guo;Yuanyi, Zheng;Haitao, Ran;Zhongliang, Deng;Lei, Chu
    • Advances in nano research
    • /
    • 제13권6호
    • /
    • pp.575-585
    • /
    • 2022
  • Due to its biofilm formation and colonization of the osteocyte-lacuno canalicular network (OLCN), Staphylococcus aureus (S.aureus) implant-associated bone infection (SIABI) is difficult to cure thoroughly, and may occur recurrently subsequently after a long period dormant. It is essential to explore an alternative therapeutic strategy that can eradicate the pathogens in the infected foci. To address this, the polymethylmethacrylate (PMMA) bone cement and Fe3O4 nanoparticles compound cylinder were developed as implants based on their size and mechanical properties for the alternative magnetic field (AMF) induced thermal ablation, The PMMA mixed with optimized 2% Fe3O4 nanoparticles showed an excellent antibacterial efficacy in vitro. It was evaluated by the CFU, CT scan and histopathological staining on a rabbit 1-stage transtibial screw model. The results showed that on week 7, the CFU of infected soft tissue and implants, and the white blood cells (WBCs) of the PMMA+2% Fe3O4+AMF group decreased significantly from their controls (p<0.05). PMMA+2% Fe3O4+AMF group did not observe bone resorption, periosteal reaction, and infectious reactive bone formation by CT images. Further histopathological H&E and Gram Staining confirmed there was no obvious inflammatory cell infiltration, neither pathogens residue nor noticeably burn damage around the infected screw channel in the PMMA+2% Fe3O4+AMF group. Further investigation of nanoparticle distributions in bone marrow medullary and vital organs of heart, liver, spleen, lung, and kidney. There were no significantly extra Fe3O4 nanoparticles were observed in the medullary cavity and all vital organs either. In the current study, PMMA+2% Fe3O4+AMF shows promising therapeutic potential for SIABI by providing excellent mechanical support, and promising efficacy of eradicating the residual pathogenic bacteria in bone infected lesions.

백서 두개골 결손부에서 항생제를 함유한 키토산 차단막의 골재생 유도 효과 (The Bone regenerative effects of tetracycline blended chitosan membranes on the calvarial critical size defect in Sprague dawley rats)

  • 채경준;김태균;정의원;이수복;정용식;이용근;김창성;채중규;조규성;김종관;최성호
    • Journal of Periodontal and Implant Science
    • /
    • 제35권4호
    • /
    • pp.1019-1037
    • /
    • 2005
  • The major goals of periodontal therapy are the functional regeneration of periodontal supporting structures already destructed by periodontal disease as well as the reduction of signs and symptoms of progressive periodontal disease. There have been many efforts to develop materials and therapeutic methods to promote periodontal wound healing. There have been increasing interest on the chitosan made by chtin. Chitosan is a derivative of chitin made by deacetylation of side chains. Chitosan has been widely studied as bone substitution and membrane material in periodontology. Many experiments using chitosan in various animal models have proven its beneficial effects. Tetracycline has been considered for use in the treatment of chronic periodontal disease and gingivitis. The aim of this study is to evlauate the osteogenesis of tetracycline blended chitosan membranes on the calvarial critical size defect in Sprague Dawley rats. An 8mm surgical defect was produced with a trephine bur in the area of the midsagittal suture. The rats were divided into five groups: Untreated control group versus four experimental group. Four types of membranes were made and comparative study was been done. Two types of non-woven membranes were made by immersing non-woven chitosan into either the tetracycline solution or chitosan-tetracycline solution. Other two types of sponge membranes were fabricated by immersing chitosan sponge into the tetracycline solution, and subsequent freeze-drying. The animals were sacrificed at 2 and 8 weeks after surgical procedure. The specimens were examined by histologic analyses. The results are as follows: 1. Clinically the use of tetracycline blended chitosan membrane showed great healing capacity. 2. The new bone formations of all the experimental group, non-woven and sponge type membranes were greater than those of control group. But, there was no significant difference between the experimental groups. 3. Resorption of chitosan membranes were not shown in any groups at 2 weeks and 8 weeks. These results suggest that the use of tetracycline blended chitosan membrane on the calvarial defects in rats has significant effect on the regeneration of bone tissue in itself. And it implicate that tetracycline blended chitosan membrane might be useful for guided tissue regeneration.

CAD/CAM Denture를 이용한 완전 무치악 환자 수복 증례 (The treatment of an edentulous patient with DENTCA$^{TM}$ CAD/CAM Denture)

  • 박준호;조인호;신수연;최유성
    • 대한치과보철학회지
    • /
    • 제53권1호
    • /
    • pp.19-25
    • /
    • 2015
  • 오늘날 치과 분야에서 CAD/CAM (computer-aided design/computer-aided manufacturing)은 인레이나 크라운, 임플란트 등에 광범위하게 사용되고 있으며 총의치로도 그 영역을 넓히고 있다. CAD/CAM을 이용하여 총의치 제작 시 환자의 chair time과 방문 횟수를 줄일 수 있고 이로 인해 총 제작기간의 단축과 비용절감을 노릴 수 있으며 기공과정의 오차 감소를 기대할 수 있다. 최근 CAD/CAM을 이용한 여러 시스템 중 DENTCA$^{TM}$ CAD/CAM denture (DENTCA Inc. Los Angeles, USA)는 무치악 인상체를 스캔한 후 디지털 상에서 의치를 디자인한 뒤 3D 프린팅을 사용하여 시적의치를 제작해 이를 최종의치로 변환하는 기술을 이용하고 있다. 이로 인해 최적의 경우 2~3번의 내원으로 의치 장착이 가능하며 정확한 의치적합도를 기대할 수 있다. 본 증례의 환자는 71세 남자로, 기존 의치를 장기간 착용하여 재제작 상담을 위해 내원하였으며 예후가 불량한 잔존 치아와 치근을 발거하고 기존 하악의치를 수정하여 2달 간 사용한 뒤, 치료를 시작하였다. DENTCA에서 제공하는 알맞은 크기의 기성 트레이를 선택하여 one-step border molding을 시행한 후, wash impression을 채득하였다. 기존의치의 수직고경을 바탕으로 고딕 아치 트레이싱을 시행한 후 결정된 중심위로 상하악 트레이를 고정하고 교합인기를 시행하였다. DENTCA에서 이를 스캔하여 인공치 배열 및 festooning을 시행하고 3D 프린팅을 이용해 시적의치를 제작하였다. 환자 구강 내에 시적하고 교합평면 및 교합관계를 평가한 뒤 다시 교합인기를 시행하였으며, 이를 바탕으로 최종의치로 변환하였다. 양측성 균형교합을 형성하기 위해 안궁 이전을 이용하여 임상적 재부착 후 교합조정을 시행하였으며 이로 인해 양호한 결과를 얻었기에 보고하는 바이다.

백서두개골 결손부에서 키토산/흡수성 콜라겐 전달체의 골재생 (The effect of chitosan/ACS on bone regeneration in rat calvarial defects)

  • 김수경;석헌주;김창성;조규성;채중규;김종관;최성호
    • Journal of Periodontal and Implant Science
    • /
    • 제33권3호
    • /
    • pp.457-474
    • /
    • 2003
  • The ultimate objective of periodontal treatment is to get rid of an on-going periodontal disease and further regenerate the supporting tissue, which is already destroyed, functionally. Currently, the bone grafting operation using various kinds of bone grafting materials and the operation for induced regeneration of periodontal tissue using the blocking membrane are performed for regeneration of the destroyed periodontal tissue. However, there are respective limitations Galenical preparations, which are used for regeneration of periodontal of tissue, has less risk of rejective reaction or toxicity that may be incidental to degradation and their effect is sustainable. Thus, in case they are applicable to a clinic, they can he used economically. Chitosan has such compatibility, biological actions including antibacterial activity, acceleration of wound treatment, etc., and excellent mechanical characteristics, which has recently aroused more interest in it. Also, it has been reported that it promotes osteogenesis directly or indirectly by functioning as a matrix to promote migration and differentiation of a specific precussor cell (for example, osteoblast) and further inhibiting the function of such a cell as fibroblast to prevent osteogenesis. In this study, the pure chitosan solution, which was obtained by purifying chitosan, was used. However, since this chitosan is of a liquiform, it is difficult to sustain it in a defective region. It is, therefore, essential to use a carrier for delivering chitosan to, and sustaining it gradually in the defective region. In the calvarial defect model of the Sprague-Dawley rat, it is relatively easy to maintain a space. Therefore, in this study, the chitosan solution with which ACS was wetted was grafted onto the defective region, For an experimental model, a calvarial defect of rat m s selected, and a critical size of the defective region was a circular defect with a diameter of 8 mm. A group in which no treatment was conducted for the calvarial defect was set as a negative control group. Another group in which treatment was conducted with ACS only was set as a positive control group (ACS group). And another group in which treatment was conducted was conducted with by grafting the pure chitosan solution onto the defective region through ACS which was wetted with the chitosan solution was set an experimental group (Chitosan/ACS group). Chitosan was applied to the Sprague-Dawley rat's calvarial bone by applying ACS which was wetted with the chitosan solution, and each Sprague-Dawley rat was sacrificed respectively 2 weeks and 8 weeks after the operation for such application. Then, the treatment results were compared and observed histologically and his tometrically. Thereby, the following conclusions were obtained. 1. In the experimental group, a pattern was shown that from 2 weeks after the operation, vascular proliferation proceeded and osteogenesis proceeded through osteoblast infiltration, and at 8 week after the operation, ACS was almost absorbed, the amount of osteogensis was increased and many osteoid tissue layers were observed. 2. At 2 weeks after the operation, each amount of osteogenesis appeared to be 8.70.8 %, 13.62.3 % and 4.80.7 % respectively in the experimental group, the positive control group and the negative control group. Accordingly, it appeared to be higher in the Experimental group and the positive control group than in the negative control group, but there was no significant difference statistically (p<0.01). 3. At 8 weeks after the operation, each amount of osteogenesis appeared to be 62.26.1%, 17.42.5 % and 8.21.4 % respectively in the experimental group, the positive control group and the negative control group. Accordingly, it appeared to be substantially higher in the experimental group than in the positive control group and the negative control group, and there was a significant difference statistically (p<0.01). As a result of conducting the experiment, when ACS was used as a carrier for chitosan, chitosan showed effective osteogenesis in the perforated defective region of the Sprague-Dawley rat's calvarial bone.

코핑 디자인과 시멘트에 따른 지르코니아 도재관의 파절 저항성 (Fracture resistance and marginal fidelity of zirconia crown according to the coping design and the cement type)

  • 심헌보;김유진;김민정;신미란;오상천
    • 대한치과보철학회지
    • /
    • 제48권3호
    • /
    • pp.194-201
    • /
    • 2010
  • 연구 목적: 본 연구는 지르코니아 코핑의 다양한 디자인과 시멘트 종류에 따른 지르코니아 도재관의 파절 저항성과 변연 적합도를 평가하고자 하였다. 연구 재료 및 방법: CAD/CAM system (Everest, KAVO Dental GmbH, Biberach, Germany)을 이용하여, 다양한 두께를 가진 지르코니아 코핑을 디자인하고 제작하였다. 80개의 코핑을 디자인에 따라 20개씩 4개의 그룹으로 분류하였으며, 각 그룹은 다시 시멘트 종류에 따라 시편을 10개씩 나누어 2개의 소그룹으로 분류하였다. Group I은 전체적으로 균일하게 0.3 mm로, group II는 협면과 협측 교합면은 0.3 mm, 설면과 설측 교합면을 0.6 mm, group III은전체0.6 mm 균일하게, Group IV는 협면과 협측 교합면은 0.6 mm 설면과 설측 교합면을 1.0 mm로 디자인 하였다. Putty index를 이용해 같은 크기와 형태의 지르코니아 도재관을 축성 후, 완성하였다. 미세 경도측정기의 현미경 (Matsuzawa, MXT-70, Japan)으로 도재관의 변연 적합도를 측정하였고, 만능시험기 (Z020, Zwick, Germany)를 이용하여 cross-head speed를 1 mm/min로 도재관이 파절될 때까지 수직 하중을 가해 파절 저항성을 측정하였다. One-way ANOVA와 two-way ANOVA 를 이용해 그 결과를 비교 분석 하였으며, 사후 검정으로 Duncan's multiple range test ($\alpha$=0.05)를 사용하였다. 결과:1. 코핑 디자인에 따른 변연적합성은 유의한 차이가 있었다 (P<.05). 2. 임시합착제 (Cavitec$^{(R)}$)로 합착한 군에서 코핑 디자인에 따른 지르코니아 도재관의 파절강도는 유의한 차이가 있었다 (P<.05). 3. 영구접착제 (Panavia-$F^{(R)}$)로 접착한 군에서 코핑 디자인에 따른 지르코니아 도재관의 파절강도는 통계학적인 유의차가 없었다 (P>.05). 4. 시멘트의 종류에 따른 동일한 디자인사이에서의 파절강도는 group I과 group II에서 Panavia-F 접착군이 Cavitec$^{(R)}$ 접착군보다 통계학적으로 유의성 있게 높았다 (P<.05). 5. 도재관의 파절 양상은 지르코니아 코핑의 디자인에 따른 차이는 없었으며, 시멘트의 종류에 따라 Cavitec$^{(R)}$ 접착군에서는 시편이 완전 분리되는 전부 파절, Panavia-$F^{(R)}$ 접착군에서는 전장 도재층에서만 파절되는 부분파절이 주로 나타났다. 결론: 제한된 결과이기는 하나 심미성을 위해 가시면을 얇게 하고 강도를 위해 비가시면의 지르코니아 코핑을 두껍게 하는, 즉 기능에 따라 두께를 달리 하는 세라믹 하부구조 디자인이 임상에서 선택적으로 활용될 수 있을 것으로 사료되었다.

브레이징 온도 변화에 따른 $ZrO_2$와 Ti-6Al-4V의 접합 특성 (Brazing characteristics of $ZrO_2$ and Ti-6Al-4V brazed joints with increasing temperature)

  • 기세호;박상윤;허영구;정재필;김원중
    • 대한치과보철학회지
    • /
    • 제50권3호
    • /
    • pp.169-175
    • /
    • 2012
  • 연구 목적: 온도 변화에 따른 $ZrO_2$와 Ti-6Al-4V의 접합 특성에 대해 알아보기 위하여 새로운 브레이징 합금을 제조하고, 브레이징 온도가 접합 특성에 미치는 영향에 대하여 조사하고자 하였다. 연구 재료 및 방법: 본 연구에서 사용된 시편으로는 실험용 $ZrO_2$ 모재(ZirBlank-PS, Acucera, Inc., Gyeonggi-do, Korea)는 소결 전의 블록형태($65mm{\times}36mm{\times}12mm(t)$)이며, 이를 잘라 사포(#2400)로 표면연마 후 소결하였다. 소결된 $ZrO_2$ 시편의 크기는 $3mm{\times}3mm{\times}3mm(t)$이다. Ti-6Al-4V 모재(Ti 6Al 4V ELI CG Bar, TMS, Washington, USA)는 직경 $10mm{\times}5mm(t)$를 사용하였다. 소결된 $ZrO_2$와 Ti-6Al-4V의 접합을 위하여 브레이징 합금을 제조하였다. 시편을 3군으로 나누어 A군은 $700^{\circ}C$에서, B군은 $750^{\circ}C$에서, C군은 $800^{\circ}C$에서 각각 브레이징 하였다. 브레이징 부의 두께와 결함율의 측정은 각 군당 하나의 시편으로 각 시편 당 5회씩 반복 측정하여 평균값을 취하였다. 결과: 브레이징 합금을 사용하여 진공 브레이징을 수행한 결과 $ZrO_2$ 와 Ti-6Al-4V 는 $700^{\circ}C-800^{\circ}C$에서 양호한 접합을 보였다. 브레이징 후 브레이징 온도 변화에 따른 브레이징 부의 두께 및 결함율의 변화는 SEM을 사용하여 측정하였다. 브레이징 온도가 $700^{\circ}C$에서 $800^{\circ}C$로 증가함에 따라 CuTi 금속간 화합물 층 및 Ti-Sn-Cu-Ag계 화합물 층의 두께는 각각 $4.5{\mu}m$에서 $10.3{\mu}m$로, $3.1{\mu}m$에서 $5.0{\mu}m$로 증가되었다. 또한 브레이징 온도가 $700^{\circ}C$에서 $800^{\circ}C$로 증가함에 따라 브레이징 접합계면의 결함율은 $ZrO_2$ 및 Ti-6Al-4V 계면에서 각각 25%에서 16.3%, 5%에서 1.5%로 감소되었다. 결론: 브레이징 온도가 $700^{\circ}C$에서 $800^{\circ}C$로 증가됨에 따라, 브레이징 접합계면의 결함율은 $ZrO_2$ 및 Ti-6Al-4V 계면에서 모두 감소되었다. 이는 결함부에서 $ZrO_2$와 활성원소인 Ti과의 반응이 충분히 일어나지 않아서 브레이징 합금이 $ZrO_2$에 웨팅되지 않은 것이 원인이라고 사료된다.

배양골세포 이식이 치조골재생에 미치는 영향 (Effects Of Cultured Bone Cell On The Regeneration Of Alveolar Bone)

  • 정순준;허익;박준봉;이만섭;권영혁
    • Journal of Periodontal and Implant Science
    • /
    • 제26권1호
    • /
    • pp.1-26
    • /
    • 1996
  • This study was performed to estimate the effects of cultured bone cell inoculated on porous type hydroxyaptite for the regeneration of the artificial alveolar bone defect. In this experiment 3 beagle dogs were used, and each of them were divided into right and left mandible. Every surgical intervention were performed under the general anesthesia by using with intravenous injection of Pentobarbital sodium(30mg/Kg). To reduce the gingival bleeding during surgery, operative site was injected with Lidocaine hydrochloride(l:80,000 Epinephrine) as local anesthesia. After surgery experimental animal were feeded with soft dietl Mighty dog, Frisies Co., U.S.A.) for 1 weeks to avoid irritaion to soft tissue by food. 2 months before surgery both side of mandibular 1st premolar were extracted and bone chips from mandibular body were obtained from all animals. Bone cells were cultured from bone chips obtained from mandible with Dulbecco's Modified Essential Medium contained with 10% Fetal Bovine Serum under the conventional conditions. Porous type hydroxyapatite were immerse into the high concentrated cell suspension solution, and put 4 hours for attachin the cells on the surface of hydroxyapatite. Graft material were inserted on the artificial bone defect after 3 days of culture. Before insertion of cellinoculated graft material, scanning electronic microscopic observation were performed to confirm the attachment and spreading of cell on the hydroxyapatite surface. 3 artificial bone defects were made with bone trephine drill on the both side of mandible of the experimental animal. First defect was designed without insertion of graft material as negative control, second was filled with porous replamineform hydroxyapatite inoculated with cultured bone marrow cells as expermiental site, and third was filled with graft materials only as positive control. The size of every artificial bone defect was 3mm in diameter and 3mm in depth. After the every surgical intervention of animals, oral hygiene program were performed with 1.0% chlorhexidine digluconate. All of the animals were sacrificed at 2, 4, 6 weeks after surgery. For obtaining histological section, tissus were fixed in 10% Buffered formalin and decalcified with Planko - Rycho Solution for 72hr. Tissue embeding was performed in paraffin and cut parallel to the surface of mandibular body. Section in 8um thickness of tissue was done and stained with Hematoxylin - Eosin. All the specimens were observed under the light microscopy. The following results were obtained : 1. In the case of control site which has no graft material, less inflammatory cell infiltration and rapid new bone forming tendency were revealed compared with experimental groups. But bone surface were observed depression pattern on defect area because of soft tissue invasion into the artificial bone defect during the experimental period. 2. In the porous hydroxyapatite only group, inflammatory cell infiltration was prominet and dense connective tissue were encapsulated around grafted materials. osteoblastic activity in the early stage after surgery was low to compared with grafted with bone cells. 3. In the case of porous hydroxyapatite inoculated with bone cell, less inflammatory cell infiltration and rapid new bone formation activity was revealed than hydroxyapatite only group. Active new bone formation were observed in the early stage of control group. 4. The origin of new bone forming was revealed not from the center of defected area but from the surface of preexisting bony wall on every specimen. 5. In this experiment, osteoclastic cell was not found around grafted materials, and fibrovascular invasion into regions with no noticeable foreign body reaction. Conclusively, the cultured bone cell inoculated onto the porous hydroxyapatite may have an important role of regeneration of artificial bone defects of alveolar bone.

  • PDF