• Title/Summary/Keyword: implant prosthesis

Search Result 640, Processing Time 0.025 seconds

Rational treatment planning for implant treatment of the edentulous patients (완전무치악환자의 전악 임플란트 치료 계획 수립을 위한 체계적인 접근법)

  • Jeong-In Bae
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.32 no.2
    • /
    • pp.54-68
    • /
    • 2023
  • Treatment planning of edentulous patient with digital method is materialized by designing the surgical guide. When designing the surgical guide, we first implement the shape of the final prosthesis in the virtual space and then materialize the implantation plan based on this. However, it is challenging to make surgical guides for edentulous patients as their lack of both the reference for the arrangement of teeth and interocclusal relationship makes it hard to envision the shape of the final prosthesis. If there exists good partial or complete dentures or residual teeth, its teeth arrangement can be used as a reference for the virtual final prosthesis and the subsequent surgical guide. If such a reference is absent or unsatisfactory, a process of manufacturing a complete denture for diagnostic purposes and verifying it on patient's mouth is necessary and use it as a new reference for the virtual final prosthesis. But even if a surgical guide is produced through the reference from the thorough reflection of the virtual final prosthesis, when we use it in the surgical field, the intraoral condition of the patient may make the implants deviated from planned in the surgical guide. In the worst case, if the positioning of the surgical guide on the mouth is incorrect, it can lead to a catastrophic error that displaces all the implant, in which case the guided surgery would be much worse than the non-guided one. In this article, we will discuss how to obtain references of tooth arrangements in a timely manner and align or register them into a unified coordinate system in digital space, and also introduce how to transfer such an implantation plan from the virtual world into the patient's mouth of real world with minimum error. And lastly, I would like to express my opinion on the establishment of a rational and systematic protocol of guided surgery of the edentulous patients.

Clinical Study on the Survival Rate and Marginal Bone Resorption of Short Implants (짧은 임플란트의 생존율과 변연골 흡수량에 관한 임상적 연구)

  • Myung, Tae-Soo;Jung, Seung-Hyun;Kim, Tae-Young;Kim, Yu-Lee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.28 no.1
    • /
    • pp.1-13
    • /
    • 2012
  • Short implants are used in parts which have anatomical structures like maxillary sinus, inferior alveolar nerve and limited alveolar height due to severe alveolar bone resorption. In these case, there are no need of additional bone augmentation so there are advantages like reduced entire treatment time, reduced patient's discomfort and protection of important anatomical structures. The aim of this study is, in implants whose length is less than 10mm, to analyze the impact of implant length, diameter, location of implant placement, presence of bone graft, presence of prosthesis splinting on survival rates and marginal bone resorption. The samples used in this study were 227 implants, less than 10mm, placed in 137 patients in Wonkwang university dental hospital implant center. From dental charts the information about implant length, diameter, location of implant placement, presence of bone graft, presence of prosthesis splinting were obtained. Emago advanced v5.6(Oral diagnostic systems, Amsterdam, The Netherlands)program was used to measure the amount of marginal bone resorption. Out of total 227 implants, resulting in 96.5 % of survival rate. There was a tendency toward higher failure rates for the maxilla and bone graft site. No significant difference in marginal bone resorption was found associated with length of implants(p>0.05) and neither with the diameter of implants. Among the risk factors examined, more failure rates of short implants can be attributed to poor bone quality in the maxilla and presence of bone graft. At implants under 10mm, length, diameter, location of implant placement, bone graft and splinting of prosthesis didn't affect marginal bone loss.

THE THREE DIMENSIONAL FINITE ELEMENT ANALYSIS OF THE BONE ANCHORED FIXED PROSTHESIS ACCORDING TO THE LOAD CONDITION (골유착 고정성 보철물 하에서 하중조건에 따른 삼차원 유한요소법적 분석)

  • Yang, Soon-Ik;Chung, Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.33 no.4
    • /
    • pp.780-806
    • /
    • 1995
  • The purpose of this study was to describe the application of 3D finite element analysis to determine resultant stresses on the bone anchored fixed prosthesis, implants and supporting bone of the mandible according to fixture numbers and load conditions. 4 or 6 fixtures and the bone anchored fixed prosthesis were placed in 3D finite element mandibular arch model which represents an actual mandibular skull. A $45^{\circ}$ diagonal load of 10㎏ was labiolingually applied in the center of the prosthesis(P1). A $45^{\circ}$ diagonal load of 20㎏ was buccolingually applied at the location of the 10mm or 20mm cantilever posterior to the most distal implant(P2 or P3). The vertical distribution loads were applied to the superior surfaces of both the right and the left 20mm cantilevers(P4). In order that the boundary conditions of the structure were located to the mandibular ramus and angle, the distal bone plane was to totally fixed to prevent rigid body motion of the entire model. 3D finite element analysis was perfomed for stress distribution and deflection on implants and supporting bone using commercial software(ABAQUS program. for Sun-SPARC Workstation. The results were as follows : 1. In all conditions of load, the hightest tensile stresses were observed at the metal lates of prostheses. 2. The higher tensile stresses were observed at the diagonal loads rather than the vertical loads 3. 6-implants cases were more stable than 4-implants cases for decreasing bending and torque under diagonal load on the anterior of prosthesis. 4. From a biomechanical perspective, high stress developed at the metal plate of cantilever-to-the most distal implant junctions as a consequence of loads applied to the cantilever extension. 5. Under diagonal load on cantilever extension, the 6-implants cases had a tendency to reduce displacement and to increase the reaction force of supporting point due to increasing the bendign stiffness of the prosthesis than 4-implants cases. 6. Under diagonal load on cantilever extension, the case of 10mm long cantilever was more stable than that of 20mm long cnatilever in respect of stress distribution and displacement. 7. When the ends of 10mm or 20mm long cantilever were loaded, the higher tensile stress was observed at the second most distal implant rather than the first most distal implant. 8. The 6-implants cases were more favorable about prevention of screw loosening under repeated loadings because 6-implants cases had smaller deformation and 4-implants cases had larger deformation.

  • PDF

Evaluation of fitness in implant screw as tightening torque in dental laboratory (기공실에서의 임플란트 토크값에 따른 적합도 평가)

  • Song, Young-Gyun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.31 no.4
    • /
    • pp.310-315
    • /
    • 2015
  • Purpose: The purpose of this study was to measure the tightening torque for dental implant in dental laboratory and to analyze of the effects of different tightening torque. Materials and Methods: The tightening torque for dental implant in dental laboratory were measured by digital torque gauge. The length of abutment and analog were measured as tightening torque of manufacturer's instructions and the measured value. And the data were statically analyzed. Results: The mean tightening torque of implant screw in dental laboratory was $1.563{\pm}0.332Ncm$. The external type implant system of total length were showing no significant differences but the internal type implant system had difference significant (P < 0.05) when compared with tightening torque. Conclusion: The implant prosthesis should be made under manufacturer's instructions especially as tightening torque of screw. For the fidelity of implant prosthesis, dental technician should learn how to use the torque gauge.

The 3-Dimensional Finite Element Analysis of Minimum Implant Structure for Edentulous Jaw (무치악에 대한 최소 임플란트의 구조물의 3차원 유한요소 해석)

  • Jang, In-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.2
    • /
    • pp.148-155
    • /
    • 2008
  • The aim of the study is to interpret the distribution of occlusal force by 3-dimensional finite element analysis of ISP(Implant Supported Prosthesis) supported by minimum number of implant to restore the edentulous patients. For this study, the Astra Tech implant system is used. Geometric modeling for 6 and 4 fixture ISP group is performed with respect to the bone, implant and one piece superstructure, respectively. Implants are arbitrarily placed according to the anatomical limit of lower jaw and for the favorable distribution of occlusal force, which is applied at the end of cantilever extension of ISP with 30mm. Element type is tetrahedral for finite element model and the typical mechanical properties, Young's modulus and Poisson's ratio of each material, cortical, cancellous bone and implant material are utilized for the finite element analysis. From this study, we can see the distribution of equivalent stress equal to real situation and speculate the difference in the stress distribution in the whole model and at each implant fixture, From the analysis, the area of maximum stress is distributed on distal contact area between bone and fixture in the crestal bone. The maximum stress is 53MPa at the 0.2mm area from the bone-implant interface in the maximum side for 300N load condition for 4 fixture case, which is slightly less than the stress calculated from allowable strain. This stress has not been deduced to directly cause the loss of crestal bone around implant fixture, but the stress can be much reduced as the old peoples may have lower chewing force. Thus, clinical trial may be performed with this treatment protocol to use 4 fixtured ISP for old patients.

Implant-Supported Fixed Prostheses for the rehabilitation of distal free end in periodontally compromised dentitions Number of fixtures affecting bone tissue change (치주질환에 이환된 환자에서 구치 상실 치열 수복을 위한 임플란트 수복)

  • Yi, Seung-Won;Kim, Young-Soo
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.1
    • /
    • pp.53-63
    • /
    • 2005
  • Number of fixtures supporting prosthesis for rehabilitation of partial edentulism in distal area is an important factor in distal area to the bone tissue response around dental implant. Optimal number and optimal positioning of dental implant has leaded to the stable condition of bone tissue and successful long-term treatment outcome. This clinical and radiographic study was performed to document and evaluate the short-term result of occlusal rehabilitation by means of implant-supported fixed prostheses (ISPs) especially for partial edentulism in distal area in patients treated for advanced periodontal disease and to verify the number of fixture affecting the bone tissue response. A total of 30 consecutive patients referred because of advanced periodontal disease were included. Before the implant therapy was initiated, periodontal treatment was performed and the outcome evaluated during at least a 6-month period. An individual maintenance care program was designed for each patient. All 75 implants were placed using a 2-stage surgical approach. The patients were divided into 2 groups, in one of which two fixtures were placed and in the other of which three fixtures were placed with tripodal geometry. Following installation of the ISPs, all patients underwent a baseline examination including evaluation of i) oral hygiene, and ii) periodontal/ peri-implant conditions, and iii) radiographs. These examinations were repeated annually during the 1 or 2-year observation period. The results were as follows: 1.No single implant was lost during the observation follow-up period. 1.The percentage of plaque harboring surfaces and bleeding units upon probing were found to be low (<10%), and no soft tissue complications were recorded. 1.Two-fixture group showed bone destruction ranged from 0.0mm to 1.5mm and the mean was 0.31mm. Three-fixture group showed more bone destruction of 0.51mm. There was no statistically difference between two groups. These results suggested that the factor for success is not the number of fixture but the strict maintenance of peri-implant tissue health and initial stability of fixture.

Comparison of stress distribution in bone and implant-supported dental prosthesis with zirconia and titanium implants: a 3-dimensional finite element analysis (지르코니아 및 티타늄 임플란트를 사용한 지지골 및 임플란트 유지 수복물의 응력 분포 비교: 3차원 유한 요소 분석)

  • Hong, Min-Ho
    • Journal of Technologic Dentistry
    • /
    • v.42 no.4
    • /
    • pp.348-354
    • /
    • 2020
  • Purpose: Zirconia is differentiated from other ceramics because of its high resistance to corrosion and wear, excellent flexural strength (900~1400 MPa), and high hardness. Dental zirconia with proven mechanical/biological stability is suitable for the manufacture of implants. However, there are limited in vivo studies evaluating stress distribution in zirconia compared with that in titanium implants and studies analyzing finite elements. This study was conducted to evaluate the stress distribution of the supporting bone surrounding zirconia and titanium implants using the finite element analysis method. Methods: For finite element analysis, a single implant-supported restoration was designed. Using a universal analysis program, eight occlusal points were set in the direction of the occlusal long axis. The occlusal load was simulated at 700 N. Results: The zirconia implant (47.7 MPa) von Mises stress decreased by 5.3% in the upper cortical bone compared with the titanium implant (50.2 MPa) von Mises stress. Similarly, the zirconia implant (20.8 MPa) von Mises stress decreased by almost 4% in the cancellous bone compared with the titanium implant (21.7 MPa) von Mises stress. The principal stress in the cortical and cancellous bone exhibited a similar propensity to von Mises stress. Conclusion: In the supporting bone, the zirconia implant is able to reduce bone resorption caused by mechanically transferred stress. It is believed that the zirconia implant can be a potential substitute for the titanium implant by reinforcing aesthetic characteristics and improving stress distribution.

A pilot study on remake of dental prosthesis of dental laboratory working (치과보철물의 재제작 실태에 관한 예비조사)

  • Nam, Shin-Eun
    • Journal of Technologic Dentistry
    • /
    • v.40 no.3
    • /
    • pp.173-180
    • /
    • 2018
  • Purpose: The purpose of this study was to verify the remake rate and cause of dental prosthesis and to investigate major factors of remake of dental prosthesis. Methods: This study carried out self-administered questionnaire survey from 126 nationwide dental laboratory CEO and directors, which was conducted from September to October in 2016. Results: Total remake rate of dental prosthesis was 10.1% at the nationwide dental laboratories. It was in order of remake rate of dental prosthesis 11.8% for CAD/CAM, 11.5% for porcelain and 11.0% for implant prosthesis. Error of clinical impression was the highest remake cause(63.7%). Nevertheless, dental laboratory take the responsibility of expense for remake of dental prosthesis, regardless of remake cause(67.4%). There was no relation between dental laboratory characteristics and the remake rate of dental prosthesis(p>.05). Conclusion : The remake rate of dental prostheses should be reduced to minimize the economic loss of dental laboratories and raise dental prosthesis satisfaction. It is required to communicate of dentist, dental technicians, and patients, moreover, undistorted information about oral environment should be provided to the dental technicians.

Three Dimensional Finite Element Analysis on ITI Implant Supported Fixed Partial Dentures with Various Fitting Accuracy (적합도에 따른 ITI 임플란트 지지 고정성 국소의치의 삼차원 유한요소 분석)

  • Choi, Min-Ho;Lee, Il-Kwon;Kim, Yu-Ree;Cho, Hye-Won
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.1
    • /
    • pp.75-87
    • /
    • 2006
  • The purpose of this study was to investigate the effects of prostheses misfit, cantilever on the stress distribution in the implant components and surrounding bone using three dimensional finite element analysis. Two standard 3-dimensional finite element models were constructed: (1) 3 ITI implant supported, 3-unit fixed partial denture and (2) 3 ITI implant supported, 3-unit fixed partial denture with a distal cantilever. variations of the standard finite element models were made by placing a $100{\mu}m$ or $200{\mu}m$ gap between the fixture, the abutment and the crown on the second premolar and first molar. Total 14 models were constructed. In each model, 244 N of vertical load and 244 N of $30^{\circ}$ oblique load were placed on the distal marginal ridge of the distal molar. von Mises stresses were recorded and compared in the crowns, abutments, crestal compact bones, and trabecular bones. The results were obtained as follows: 1. In the ITI implant system, cement-retained prostheses showed comparatively low stress distributions on all the implant components and fixtures regardless of the misfit sizes under vertical loading. The stresses were increased twice under oblique loading especially in the prostheses with cantilever, but neither showed the effects of misfit size. 2. Under the oblique loading and posterior cantilever, the stresses were highly increased in the crestal bones around ITI implants, but effects of misfit were not shown. Although higher stresses were shown on the apical portion of trabecular bones, the effects by misfit were little and the stresses were increased by the posterior cantilever. 3. When the cement loss happened in the ITI implant supported FPD with misfit, the stresses were increased in the implant componets and supporting structures.

Esthetic restoration in mandibular anterior region with one-piece implant and immediate loading (하악 전치부에서의 일체형 임플란트 식립 후 즉시부하)

  • Yoon, Sena
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.27 no.2
    • /
    • pp.97-104
    • /
    • 2018
  • Mandibular anterior region has high implant survival rates and better accessibility compared with any other region. Even if there are possibilities for perforation on lingual cortical bone due to improper drilling and bleeding caused by lingual artery damage, mandibular anterior region is a safe region because less amount of major anatomical structures exist compared with other regions. However, because of narrow bucco-lingual width of alveolar ridge, it is challengeable to obtain esthetic implant prosthesis. Although patients are less sensitive subjectively, mandibular anterior region is as difficult as maxillary anterior region in that implant placement location plays a critical role on the prognosis of implant prosthesis. One-piece implant is a very useful option for mandibular anterior region. Considering the narrow roots and thin alveolar bone of mandible, it is clinically difficult for implant diameter to be greater than 3mm In this case, we could approach the esthetic restoration in mandibular anterior region with one-piece implant and immediate loading.