• Title/Summary/Keyword: implant prosthesis

Search Result 640, Processing Time 0.028 seconds

A STUDY ON FAILURE STRENGTH OF THE IMPLANT PROSTHESIS LUTED WITH RESIN CEMENT BETWEEN GOLD CYLINDER AND SUPERSTRUCTURE (상부구조물과 금원주를 레진시멘트로 접착시킨 임프란트 보철물의 파절에 대한 연구)

  • Kim, Seung-Beom;Bae, Jeong-Sik
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.3
    • /
    • pp.438-447
    • /
    • 1996
  • This study was performed to determine the failure strength and pattern of implant prosthesis luted with resin cement between gold cylinder and superstructure, and to evaluate the bonding strength of resin cement. To evaluate failure strength and pattern, the groups were divided into 2. Group 1 : Casted gold cylinder Group 2 : Luted with resin cement between gold cylinder ans superstructure. To evaluate effects of the bonding strength of the implant prosthesis luted with resin cement according to storage condition, the groups were divided into 3 : Group A : Stored in waste at $37^{\circ}C$ for 24 hours. Group B : 1000 cycles thermocycled between $5^{\circ}C\;and\;55^{\circ}C$ in water. Group C : Stored in water at $37^{\circ}C$ for 30 days. The results were as follows. 1. Failure was found at gold screw in all specimens of group 1 & 2. 2. The bond strength in group 1 and 2 was 189.86 and 188.14kgf. There was no statistically significant difference between group 1 and 2(P>0.05). 3. The bond strength of group A, B and C was 53.28, 45,86 and 39.29Kgf. There result suggest the advantage of an improved fit of superstructure to the abutment and a simple procedure. But there was a measurable decrease of the bond strength according to storage condition. So, Further research is necessary to evaluate of the implant prosthesis luted with resin cement between gold cylinder and superstructure.

  • PDF

A THREE DIMENSIONAL FINITE ELEMENT STRESS ANALYSIS OF OSSEOINTEGRATED PROSTHESIS ACCORDING TO THE LOCATION AND LENGTH OF CANTILEVER (골유착성 임플랜트 보철물의 캔틸레버 위치와 길이변화에 따른 삼차원 유한요소법적 응력분석)

  • Jang, Bok-Sook;Kim, Chang-Whe;Kim, Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.3
    • /
    • pp.501-532
    • /
    • 1996
  • This study investigated the effects of cantilever length, location and load condition on stress distribution developed in the implants, prostheses and supporting tissues. The osseointegrated prostheses with two 10mm Branemark implants at 2nd premolar and 1st molar sites with cantilever extensions at 1st premolar, 2nd and 3rd molar sites were constructed. Under 100N, 200N of vertical and $45^{\circ}$ oblique loads at the cantilever pontics, stress distribution patterns and displacement were analyzed with three dimensional finite element method. The results were as follows : 1. The stress was concentrated at the joint of the cantilever pontic and implant superstructure, the neck of implant and the ridge crest near the cantilever But there was little load transfer to the lower supporting tissues of implants. 2. The implant near the cantilever was displaced inferiorly while the implant far from the cantilever was displaced superiorly. In horizontal direction the implants were displaced to the direction where the loads were applied, except the apexes of the implants. 3. In case of anterior cantilever, the stress and displacement were higher than the prosthesis connected with natural tooth. 4. The stress developed in the posterior cantilevered type was higher than in the anterior cantilevered type. The greastest stress was concentrated at the ridge crest near the posterior cantilever. 5. The longer the cantilever, the more the stress was developed and was concentrated at the joint of the cantilever pontic and implant superstructure. 6. Under oblique load, the stress was concentrated at the necks of implants and the ridge crests, but decreased at the joint of the cantilever pontic and implant superstructure than under vertical load.

  • PDF

Detachable zirconia prosthesis using Milled bar and ADD-TOC attachment in partial edentulous mandible: A case report (하악 부분 무치악 환자에서 Milled-bar와 ADD-TOC 부착 장치를 이용한 탈착 가능한 지르코니아 보철물 수복 증례)

  • Min-Sung Sohn;Jung-Bo Huh
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.61 no.1
    • /
    • pp.90-99
    • /
    • 2023
  • Implant overdentures are widely used as a treatment method to restore oral function in completely edentulous or partially edentulous patients with severe bone resorption. Using a milled bar, it is mechanically advantageous as the implant fixtures are splinted. Applying additional attachments to the bar has the advantage of dispersing the stress applied to the implant. In this case, a patient who used implant overdentures using 4 implants wanted to fabricate a new prosthesis due to repeated fractures of the denture and weakened retention. Milled bar with ADD-TOC attachment and zirconia prosthesis were fabricated by CAD-CAM method and mechanically and aesthetically satisfactory results were obtained.

Hybrid Prosthesis Supported by Osseointegrated Implants in Maxilla (골유착성 임프란트에 의해 지지되는 새로운 설계의 Hybrid Prosthesis)

  • Lee, J.S.;Shin, S.W.
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.8 no.1
    • /
    • pp.46-59
    • /
    • 1999
  • A fixed bridge is preferred as a prosthetic option supported by oral implants. However, it is very difficult to re tore edentulous maxilla with fixed prosthesis in cases with improper position and angulation of fixtures, abnormal jaw relation, and need for proper lip support. Six Br${\aa}$nemark implants were installed in edentulous maxilla opposing mandible with natural dentition. A removable hybrid prosthesis attached to a bar milled by 6 degrees was therefore designed to overcome such disadvantages of fixed prosthesis. Lateral stabilization of removable prosthesis was obtained by framework closely fitting the milled bar. Support for the prosthesis was ensured by three elevated areas on the bar. Two precision attachments(CEKA REVAX) provided appropriate direct and indirect retention without influencing support. A clinical and laboratory procedure was presented.

  • PDF

An evaluation of the stress effect of different occlusion concepts on hybrid abutment and implant supported monolithic zirconia fixed prosthesis: A finite element analysis

  • Yesilyurt, Nilgün Gulbahce;Tuncdemir, Ali Riza
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.4
    • /
    • pp.216-225
    • /
    • 2021
  • PURPOSE. The aim of this study is to evaluate the effects of canine guidance occlusion and group function occlusion on the degree of stress to the bone, implants, abutments, and crowns using finite element analysis (FEA). MATERIALS AND METHODS. This study included the implant-prosthesis system of a three-unit bridge made of monolithic zirconia and hybrid abutments. Three-dimensional (3D) models of a bone-level implant system and a titanium base abutment were created using the original implant components. Two titanium implants, measuring 4 × 11 mm each, were selected. The loads were applied in two oblique directions of 15° and 30° under two occlusal movement conditions. In the canine guidance condition, loads (100 N) were applied to the canine crown only. In the group function condition, loads were applied to all three teeth. In this loading, a force of 100 N was applied to the canine, and 200-N forces were applied to each premolar. The stress distribution among all the components of the implant-bridge system was assessed using ANSYS SpaceClaim 2020 R2 software and finite element analysis. RESULTS. Maximum stress was found in the group function occlusion. The maximum stress increased with an increase in the angle of occlusal force. CONCLUSION. The canine guidance occlusion with monolithic zirconia crown materials is promising for implant-supported prostheses in the canine and premolar areas.

Effects of implant alignment and load direction on mandibular bone and implant: finite element analysis (임플란트 배열과 하중 방향이 임플란트와 치조골에 미치는 유한요소 응력분석)

  • Chung, Hyunju;Park, Chan;Yun, Kwi-Dug;Lim, Hyun-Pil;Park, Sang-Won;Yang, Hongso
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.36 no.3
    • /
    • pp.176-182
    • /
    • 2020
  • Purpose: To evaluate the effects of load direction, number of implants, and alignment of implant position on stress distribution in implant, prosthesis, and bone tissue. Materials and Methods: Four 3D models were made to simulate posterior mandible bone block: two implants and 3-unit fixed dental prosthesis (FDP) with a pontic in the center (model M1), two implants and 3-unit FDP with a cantilever pontic at one end (model M2), FDP supported by three implants with straight line placement (model M3) and FDP supported by three implants with staggered implant configuration (model M4). The applied force was 120 N axially or 120 N obliquely. Results: Peak von Mises stresses caused by oblique occlusal force were 3.4 to 5.1 times higher in the implant and 3.5 to 8.3 times higher in the alveolar bone than those stresses caused by axial occlusal force. In model M2, the connector area of the distal cantilever in the prosthesis generated the highest von Mises stresses among all models. With the design of a large number of implants, low stresses were generated. When three implants were placed, there were no significant differences in the magnitude of stress between staggered arrangement and straight arrangement. Conclusion: The effect of staggering alignment on implant stress was negligible. However, the number of implants had a significant effect on stress magnitude.

Three-dimensional finite element analysis on stress distribution of the mandibular implant-supported cantilever prostheses depending on the designs (임플란트 지지 하악 캔틸레버 보철물의 디자인에 따른 저작압 분산에 관한 삼차원 유한요소 분석)

  • Ban, Jae-Hyurk;Shin, Sang-Wan;Kim, Sun-Jong;Lee, Jeong-Yeol
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.1
    • /
    • pp.70-81
    • /
    • 2009
  • Statement of problem: The position and length of cantilever influence on the stress distribution of implants, superstructure and bone. In edentulous mandible, implant-supported cantilever prostheses that based 4 or 6 implants between mental foramens has been attempted. Excessive bite force loaded at cantilever prosthesis causes bone resorption and breakage of superstructure prosthesis around posterior implants. To complement the cantilever length of conventional prosthesis, In 1992, (McCartney) introduced "cantilever-rest-implant" and Malo reported "All-on-Four" in 2003. Purpose: Analyze and compare the stress distribution of conventional cantilever prostheses with rest implant and All-on-$Four^{TM}$ implant prostheses. Material and method: The external loads(300 N vertically, 75 N horizontally) are applied to first molar area. The stress value, stress distribution and aspect of stress dispersion are analyzed by three-dimensional finite element analysis program, ANSYS ver. 10.0. Results: 1. The rest implant and "All-on-Four" implant system are superior to conventional cantilever prostheses to reduce stress on the bone and the superstructure around implants. 2. The rest implant was of the greatest advantage to stress distribution on bone, implant and superstructure. 3. With same number of implants, distally tilted implants are preferred to conventional cantilever prostheses for reducing the length of cantilever.

Comparative evaluation of peri-implant stress distribution in implant protected occlusion and cuspally loaded occlusion on a 3 unit implant supported fixed partial denture: A 3D finite element analysis study

  • Acharya, Paramba Hitendrabhai;Patel, Vilas Valjibhai;Duseja, Sareen Subhash;Chauhan, Vishal Rajendrabhai
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.2
    • /
    • pp.79-88
    • /
    • 2021
  • Purpose. To assess peri-implant stress distribution using finite element analysis in implant supported fixed partial denture with occlusal schemes of cuspally loaded occlusion and implant protected occlusion. Materials and methods. A 3-D finite element model of mandible with D2 bone with partially edentulism with unilateral distal extension was made. Two Ti alloy identical implants with 4.2 mm diameter and 10 mm length were placed in the mandibular second premolar and the mandibular second molar region and prosthesis was given with the mandibular first molar pontic. Vertical load of 100 N and and oblique load of 70 N was applied on occlusal surface of prosthesis. Group 1 was cuspally loaded occlusion with total 8 contact points and Group 2 was implant protected occlusion with 3 contact points. Results. In Group 1 for vertical load, maximum stress was generated over implant having 14.3552 Mpa. While for oblique load, overall stress generated was 28.0732 Mpa. In Group 2 for vertical load, maximum stress was generated over crown and overall stress was 16.7682 Mpa. But for oblique load, crown stress and overall stress was maximum 22.7561 Mpa. When Group 1 is compared to Group 2, harmful oblique load caused maximum overall stress 28.0732 Mpa in Group 1. Conclusion. In Group 1, vertical load generated high implant stress, and oblique load generated high overall stresses, cortical stresses and crown stresses compared to vertical load. In Group 2, oblique load generated more overall stresses, cortical stresses, and crown stresses compared to vertical load. Implant protected occlusion generated lesser harmful oblique implant, crown, bone and overall stresses compared to cuspally loaded occlusion.

Zirconia ceramic fixed dental prosthesis with all-on-4 concept implants for irradiated maxilla: A case report (방사선 조사된 상악골에서 all-on-4 임플란트에 의해 지지되는 지르코니아 고정성 보철물 수복 증례)

  • Choi, Eun-Joo;Cho, Hye-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.55 no.2
    • /
    • pp.218-224
    • /
    • 2017
  • The implant-supported fixed dental prosthesis in irradiated maxilla needs meticulous treatment planning due to low bone healing capacity. All-on-4 concept implantation can reduce the number of implants to be placed avoiding bone grafting procedure. Conventionally, prefabricated angled abutments for tilted implants have been used. However, in this case, it was replaced with computer-aided design and computer-aided manufacturing (CAD/CAM) abutment. This case report described all-on-4 concept implantation and fabrication of CAD/CAM zirconia fixed dental prostheses using CAD/CAM titanium abutments.