• Title/Summary/Keyword: impinging jet model

검색결과 79건 처리시간 0.014초

Experimental study on flow characteristics of downburst-like wind over the 3D hill using the wall jet and the impinging jet models

  • Bowen Yan;Kaiyan Xie;Xu Cheng;Chenyan Ma;Xiao Li;Zhitao Yan
    • Wind and Structures
    • /
    • 제39권2호
    • /
    • pp.141-161
    • /
    • 2024
  • Engineering structures often suffer significant damage in the horizontal outflow region of downburst. The wall jet model, which simplifies the simulation device by only modeling the horizontal outflow region of downburst, has been widely employed to study downburst flow characteristics. However, research on downburst wind fields over hilly terrain using the wall jet model is limited, and the relationship between the downburst wind fields generated by wall jet and impinging jet remains unclear. This study investigates the flow characteristics of downburst-like wind over a 3D ideal hill model using wind tunnel tests with the wall jet and impinging jet models. The effects of hill height, slope, shape, and radial position on the speed-up ratio are examined using the wall jet flow. The results indicate that slope and radial position significantly affect the speed-up ratio, while hill height have a slight impact and shape have a minimal impact. Additionally, this study investigates the wind field characteristics over flat terrain using the impinging jet, and investigated the connection between the impinging jet model and the wall jet. Based on this connection, a comparison of the downburst-like flow characteristics over the same 3D ideal hill using the wall jet and impinging jet models is conducted, which further validates the reliability of the wall jet model for studying downburst flow characteristics over hilly terrain.

Influence of tilt and surface roughness on the outflow wind field of an impinging jet

  • Mason, M.S.;Wood, G.S.;Fletcher, D.F.
    • Wind and Structures
    • /
    • 제12권3호
    • /
    • pp.179-204
    • /
    • 2009
  • A physical and numerical steady flow impinging jet has been used to simulate the bulk characteristics of a downburst-like wind field. The influence of downdraft tilt and surface roughness on the ensuing wall jet flow has been investigated. It was found that a simulated downdraft impinging the surface at a non-normal angle has the potential for causing larger structural loads than the normal impingement case. It was also found that for the current impinging jet simulations, surface roughness played a minor role in determining the storm maximum wind structure, but this influence increased as the wall jet diverged. However, through comparison with previous research it was found that the influence of surface roughness is Reynolds number dependent and therefore may differ from that reported herein for full-scale downburst cases. Using the current experimental results an empirical model has been developed for laboratory-scale impinging jet velocity structure that includes the influence of both jet tilt and surface roughness.

축류 팬을 이용한 충돌제트 전자냉각 설계개념에 대한 연구 (Study on the Design Concept of Impinging Jet Electronics Cooling by Using Axial Fan)

  • 이찬;길현권
    • 한국유체기계학회 논문집
    • /
    • 제12권2호
    • /
    • pp.24-30
    • /
    • 2009
  • Flow and noise analyses are conducted for examining a new design concept of impinging jet electronics cooling, and the analysis results are compared with conventional electronics cooling techniques. For the application of impinging jet electronics cooling method, the present study considers the air duct where air is supplied by axial fan and air flow from the duct is impinged vertically onto the electronic component heat source. Applying CFD simulation technique and fan noise model to the present cooling scheme, the cooling performance of the impinging jet as well as the operation condition and the noise characteristics of fan are investigated for various impinging jet nozzle conditions and fan models. Furthermore, the impinging jet electronics cooling analysis results are compared with the conventional parallel-flow cooling scheme to give the design concept and criteria of impinging jet cooling method.

상온 충돌판에서의 디젤 충돌 분무의 거동 특성 (The Behavior Characteristics of Diesel Impinging Spray on the Room Temperature Impinging Disk)

  • 차건종;서경일;김덕줄
    • 한국분무공학회지
    • /
    • 제1권4호
    • /
    • pp.24-31
    • /
    • 1996
  • This study addresses the behavior characteristics of diesel spray injected on the impinging disk with the room temperature. The models of impinging spray are the stick, the reflect and the wall jet model In the initiative of the fuel injection the impinging spray was the reflect model. because the momentum of droplets was very large. This model developed to the wall jet model according to the time approaches. On the low temperature disk the fuel film was made by the attachment of the droplets with low Weber number. The thickness of impinging spray was increased when the disk approached to the nozzle tip. Mathematical analysis for calculation with the behavior of impinging spray have to consider the reflecting effect and the influence of the fuel film.

  • PDF

입구유동 가진이 있는 충돌제트 유동의 유동 및 열전달 변화에 대한 난류모델 적용 (Application of turbulent model to characteristics of heat transfer in impinging jet flow with pulsed inlet)

  • 권동호;김희영;박태선
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.593-596
    • /
    • 2008
  • Because of good performance of heat transfer characteristics, impinging jets are widely used in many industries for cooling or heating. And the present num erical studies attempt to show the effects of impinging jet. This paper considers the application of the turbulent models to impinging jet flow with pulsed inlet. It is assumed two-dimensional turbulent flows. The jet Reynolds num ber is set at 23,000 and the distance from the exit of the nozzle to the plate is 3 times larger than the diam eter of the nozzle. The influence of the Strouhal num ber(pulsation frequency) on Nusselt number at the impinging region is investigated. Strouhal numbers are ranged 0.0 to 0.5 and the forcing amplitudes are 1%,5%,9% of mean inlet velocity. In this study, the Nusselt number at the impinging region is sensitive to the pulsation frequency. Heat transfer coefficient strongly increase at Strouhal num ber of 0.4.

  • PDF

고속 충돌제트의 불안정특성 (Instability of High-Speed Impinging Jets(I))

  • 권영필
    • 대한기계학회논문집B
    • /
    • 제22권4호
    • /
    • pp.452-458
    • /
    • 1998
  • The objective of this study is to obtain the unstable characteristics of the high-speed two-dimensional jet impinging normally onto a flat plate. The study is based on the feedback model and the experiment of the frequency characteristics of the impinging tones. Using the experimental data for the tonal frequencies of the impinging tones the convection speed of the unstable jet is obtained along with all the other features. Three kinds of unstable modes are clarified: asymmetric $A_{1}$ and $A_{2}$ and symmetric S. The condition for the excitation of each mode is found in terms of Strouhal number and Reynolds number. The convection speed is estimated and discussed in comparison with existing theoretical models. It is found that the convection speed increases with frequency when the mode is asymmetric, but decreases when it is symmetric. In addition, the characteristics of the high-speed impinging jet are compared with the low-speed impinging jet.

차실내 Defrost 노즐 분류의 충돌각 변화에 따른 유동특성에 관한 실험적 연구 (An Experimental Study on the Flow Characteristics with the Impinging Angles of Defrost Nozzle Jet Inside a Vehicle Passenger Compartment)

  • 김덕진;김현주;노병준;이지근
    • 대한기계학회논문집B
    • /
    • 제31권12호
    • /
    • pp.1024-1032
    • /
    • 2007
  • The flow characteristics with the impinging angles of defrost nozzle jet inside a commercial vehicle passenger compartment were investigated experimentally by using the two-dimensional duct-nozzle model. The shape of the nozzle contraction was designed according to the curved line of cubic equation to the vertical plan of the flow direction. The impinging angles, defined as the angle between nozzle axis and a vertical line to the windshield, were varied from the $0^{\circ}\;to\;80^{\circ}$. The mean velocity distributions, the half-widths, and the momentum distributions with the cases of both the free jet and the impinging jet onto the dummy windshield were measured. The impinging jet flows similarly with wall jet from $X/b_o=20$, and the impinging angle has an effect on the half-width of the impinging jet. The momentum distributions onto the windshield increased with the increase of impinging angle, and then their inflection point was observed around the impinging angle of $60^{\circ}$.

벽면 충돌 난류 확산화염의 특성 (The Characteristics of Turbulent Diffusion Flame Impinging on the Wall)

  • 박용열;김호영
    • 대한기계학회논문집B
    • /
    • 제23권2호
    • /
    • pp.175-184
    • /
    • 1999
  • A theoretical study on the turbulent round jet diffusion flame impinging on the wall was carried out to predict the characteristics and structure of Impinging jet flame and heat transfer to the wall. Finite chemistry via Arrhenius equation and eddy dissipation model was adopted as a combustion model, and the Favre averaging and $k-{\varepsilon}$ model were Introduced In the theoretical modeling. The SIMPLE algorithm was applied to the calculation. All the transport properties were considered as the variable depending on the temperature and composition. For the parametric study, the distance from nozzle to impinging wall and Reynolds number at nozzle exit were chosen 88 the major parameters. As the results of the present study, the characteristics of flow fields, the distributions of main variables and each chemical species and the flame shapes were obtained. The heat transfer rate from the flame to the wall and the effective heating area were calculated to investigate the Influences of the major parameters on the heat transfer characteristics.

엇갈리게 기울어진 충돌제트들에 의한 오목면 상의 열전달 성능해석 (ANALYSIS OF HEAT TRANSFER OF INCLINED IMPINGING JETS ON A CONCAVE SURFACE)

  • 허만웅;이기돈;김광용
    • 한국전산유체공학회지
    • /
    • 제16권2호
    • /
    • pp.11-16
    • /
    • 2011
  • Numerical analyses have been carried out to analyze the three-dimensional turbulent heat transfer by impingement jet on a concave surface with variation of geometric configurations. Three-dimensional Reynolds averaged Navier-stokes equations have been calculated using the shear stress transport turbulent model. The numerical results for heat transfer rate were validated in comparison with the experimental data. The distance between jet nozzles and angle of inclined jet nozzle were selected as the geometric variables. Area-averaged Nusselt numbers on concave surface are evaluated to find the characteristics of heat transfer with the two geometric variables. The heat transfer increases as the distance between jet nozzles increases, and the inclined impinging jets show much better heat transfer performance than the vertical impinging jet.

초음속충돌제트의 열전달에 관한 실험적 연구 (Experimental Study on the Heat Transfer of Supersonic Impinging Jet)

  • 이찬;정명균
    • 대한기계학회논문집
    • /
    • 제15권1호
    • /
    • pp.323-327
    • /
    • 1991
  • 본 연구에서는 로켓노즐로 부터 분출되는 고온의 초음속제트가 45˚로 경사진 평판으로 분사되는 경우의 열전달을 측정하였다.고온의 제트가 충돌하는 평판표면 의 고온과 열유속을 측정하는 것이 거의 불가능하므로, 국소적열전달은 국소적 준 1차 원 열전도모형을 평판표면 아래에서 측정한 온도자료에 적용하여 구하였다.