• 제목/요약/키워드: impermeable

검색결과 305건 처리시간 0.024초

원유저장탱크 방류벽의 콘크리트 바닥재 불침투성 세부기준 연구 (Impermeable Standards for the Concrete Bottom of Dikes for Crude Oil Storage Tanks)

  • 신창현;박재학;윤준헌
    • 한국안전학회지
    • /
    • 제31권1호
    • /
    • pp.54-60
    • /
    • 2016
  • The bottom of dikes must be kept impermeable to control hazardous chemicals spilled from storage tanks. Currently, insufficient related chemical control laws lead to a possibility to spread through the bottom. Generally, due to the high cost of installation and periodical maintenance, many businesses prefer to install the bottom with general concrete. But, since the impermeability of concrete is dependent on the kind of materials and chemical reaction, all concrete cannot be considered as impermeable material. Thus, it is necessary to make the installation standards of the dike bottom clear in order to avoid the argument over the impermeability and prevent the chemical accident. This study has suggested the standards of impermeable concrete by conducting 7-day exposure test to crude oil with the pilot dikes. The results have showed that the standards have the better impermeable performance compared with the germany standard, which have been penetrated at the maximum penetration depth of 1.9 cm. This study is expected to contribute to both the risk reduction of penetrating into the bottom and the cost reduction of spending to make the bottom of dikes impermeable.

The work fatigue of the several workloads with the impermeable clothing

  • 권영국
    • 대한인간공학회지
    • /
    • 제10권2호
    • /
    • pp.43-50
    • /
    • 1991
  • This paper reports the results of four related studies concerning the combined effects of impermeable clothing and alternating levels of workload. The negative consequences of impaired evporation due to impermeable clothing are compared for different schedules, workloads, preheating, and high heat conditions.

  • PDF

도시 토지피복별 불투수면적률과 녹지면적률에 따른 지표면 일최고온도 변화량 산정방법 (Development of calculating daily maximum ground surface temperature depending on fluctuations of impermeable and green area ratio by urban land cover types)

  • 김영란;황성환
    • 상하수도학회지
    • /
    • 제35권2호
    • /
    • pp.163-174
    • /
    • 2021
  • Heatwaves are one of the most common phenomena originating from changes in the urban thermal environment. They are caused mainly by the evapotranspiration decrease of surface impermeable areas from increases in temperature and reflected heat, leading to a dry urban environment that can deteriorate aspects of everyday life. This study aimed to calculate daily maximum ground surface temperature affecting heatwaves, to quantify the effects of urban thermal environment control through water cycle restoration while validating its feasibility. The maximum surface temperature regression equation according to the impermeable area ratios of urban land cover types was derived. The estimated values from daily maximum ground surface temperature regression equation were compared with actual measured values to validate the calculation method's feasibility. The land cover classification and derivation of specific parameters were conducted by classifying land cover into buildings, roads, rivers, and lands. Detailed parameters were classified by the river area ratio, land impermeable area ratio, and green area ratio of each land-cover type, with the exception of the rivers, to derive the maximum surface temperature regression equation of each land cover type. The regression equation feasibility assessment showed that the estimated maximum surface temperature values were within the level of significance. The maximum surface temperature decreased by 0.0450℃ when the green area ratio increased by 1% and increased by 0.0321℃ when the impermeable area ratio increased by 1%. It was determined that the surface reduction effect through increases in the green area ratio was 29% higher than the increasing effect of surface temperature due to the impermeable land ratio.

VOF 법에 의한 불규칙파동장에 있어서 불투과잠제에 의한 파랑에너지 변형특성 (The Characteristics of Wave Energy Variations by Impermeable Submerged Breakwater Using VOF Method in Irregular Wave Fields)

  • 허동수;김도삼
    • 한국해안해양공학회지
    • /
    • 제15권4호
    • /
    • pp.207-213
    • /
    • 2003
  • 본 연구는 불규칙파동장에 설치된 불투과잠제를 대상으로 잠제의 배후에서 파랑에너지의 변화특성을 고찰한다. 이를 위해 VOF법에 기초한 2차원수치파동수로를 이용하였다. VOF법은 쇄파를 포함한 자유수면의 수치 모의가 가능한 가장 효과적인 방법이다. 잠제배후에서 주파수스펙트럼의 해석결과에 의하면 쇄파는 잠제의 파랑제어능에 중요한 역할을 하고 있음을 확인하였다. 잠제의 천단상에서 쇄파가 발생하는 경우에 일렬잠제는 파에너지가 단주기측으로 이동하고 이열잠제의 경우는 스펙트럼의 피크가 뚜렷하지 않고 비슷한 크기의 에너지가 전 주파수대에 걸쳐 분포됨을 확인하였다.

질산 저장탱크 방류벽의 불침투성 콘크리트 바닥에 대한 위험성 평가 (Analysis on the Risk of the Impermeable Concrete Bottom of Dikes for Nitric Acid Storage Tanks)

  • 신창현;박재학;윤준헌
    • 한국안전학회지
    • /
    • 제31권3호
    • /
    • pp.53-59
    • /
    • 2016
  • Considering the chemical reaction between concrete which is the raw material of the dike bottoms and hazardous chemicals, some chemicals can have negative effects on the impermeability of concrete dike bottoms. The impermeable standards for the concrete bottom of dikes have been made in the recent study, but the previous study was based on the exposure test to crude oil which is not corrosive and not related to the chemical reaction. It can be concluded that the test of crude oil can't represent all kinds of hazardous chemicals, especially highly corrosive chemicals. Meanwhile, this study has conducted the exposure test to nitric acid that is strongly corrosive and very hazardous. The results have showed that nitric acid has been penetrated at the maximum penetration depth of 2.9 cm for 7 days and the impermeable standards are better than the germany standard. Through this study with severe chemical, the scientific basis on the installation standards of all dike bottoms which are generally used in the industry has been obtained.

수중구조물의 파고전달계수 산정 실험 : III. 불투과형 수중구조물 (Experimental Study on Wave Transmission Coefficients of Submerged Structures: III. Impermeable-Type Structure)

  • 이종인;조지훈
    • 대한토목학회논문집
    • /
    • 제40권6호
    • /
    • pp.593-601
    • /
    • 2020
  • 콘크리트블록으로 피복된 불투과형 수중구조물을 대상으로 파랑의 전파현상을 검토하기 위해 2차원 수리실험을 수행하였다. 수리실험은 수중구조물의 서로 다른 상대여유수심, 상대여유고, 상대상단폭 및 파형경사 등을 적용하여 수행되었다. 수리실험결과를 이용하여 불투과형 수중구조물에 대한 파고전달계수 산정식을 제안하였다. 제안된 경험식은 불투과형 수중구조물의 파고전달계수를 충분한 정도로 예측함을 확인하였으며, 기존 경험식을 개선하였다.

투과성 및 불투과성 경사면 상에서 지진해일의 처오름 높이에 관한 수치적 검토 (A Numerical Study on Tsunami Run-up Heights on Impermeable/Permeable Slope)

  • 이우동;허동수;구남헌
    • 한국연안방재학회지
    • /
    • 제1권1호
    • /
    • pp.1-9
    • /
    • 2014
  • In order to examine the characteristics of tsunami run-up heights on impermeable/permeable slope, a numerical wave tank by upgrading LES-WASS-3D was used in this study. Then, the model were compared with existing hydraulic model test for its verification. The numerical results well reproduced experimental results of solitary wave deformation, propagation and run-up height under various conditions. Also, the numerical simulation with a slope boundary condition has been carried out to understand solitary wave run-up on impermeable/permeable slope. It is shown that the run-up heights on permeable slope is 52.64-63.2% smaller than those on the impermeable slope because of wave energy dissipation inside the porous media. In addition, it is revealed that the numerical results with slope boundary condition agreed well with experimental results in comparison with the results by using stair type boundary condition.

포화 수리전도도와 불투수층 깊이에 따른 우리나라 토양의 수문학적 토양군 분류 (Classification of Hydrologic Soil Groups of Korean Soils Using Estimated Saturated Hydraulic Conductivity and Depth of Impermeable Layer)

  • 한경화;정강호;조희래;이협성;옥정훈;서미진;장용선;서영호
    • 한국농공학회논문집
    • /
    • 제59권5호
    • /
    • pp.25-30
    • /
    • 2017
  • Hydrologic soil group is one of the important factors to determine runoff potential and curve number. This study was conducted to classify the hydrologic soil groups of Korean soils by considering saturated hydraulic conductivity and depth of impermeable layer. Saturated hydraulic conductivity of Korean soils was estimated by pedotransfer functions developed in the previous studies. Most of paddy soils were classified as D type due to shallow impermeable layer and low saturated hydraulic conductivity in B soil horizon. For upland and forest, soils classified to A and D types increased compared with former classification method because underestimated permeabilities and overestimated drainages were corrected and rock horizon in shallow depth was regarded as impermeable layer. Soils in mountainous land showed the highest distribution in A type, followed by D type. More than 60 % of soils in mountain foot-slope, fan and valley, alluvial plains, and fluvio-marine deposits were classified to D type because of land use such as paddy and upland.

3차원파동장에 있어서 복수열불투과성잠제에 의한 파랑제어에 관한 연구 (Wave Control by Multi-Rowed Impermeable Submerged Breakwaters in Three-Dimensional Wave Fields)

  • 김도삼;배은훈;이봉재
    • 한국해양공학회지
    • /
    • 제15권3호
    • /
    • pp.107-113
    • /
    • 2001
  • This study is focused on the wave control by economical multi-rowed impermeable submerged breakwaters which need less materials than a one-rowed submerged breakwater. A boundary element method and eigenfunction expansion method based on the Green\`s theorem are appled to analyze the characteristics of wave transformation. Submerged breakwaters are consisted of one and two-row with rectangular section. Wave transformation characteristics are investigated by the various combinations of placement distance and crown water depth.

  • PDF

인공지반의 녹화에 의한 도시의 재생 (Urban Renewal with Green on Impermeable Surface)

  • Hajime, Koshimizu
    • 한국환경복원기술학회지
    • /
    • 제7권4호
    • /
    • pp.17-31
    • /
    • 2004
  • How far of natural regeneration of the city and improvement on the urban environment will be possible in the replanting on the impermeable surface? The replanting of what kind of form will be obtained in order to realize it? The regeneration of the nature is possible, if it can be realized at the thin soil layer in which the result of being equivalent to the natural soil function. Using the light artificial soil with the water retentiveness, it is possible that green on the artificial ground reinforces the green skeleton of the city. The green of artificial ground improves the thermal ambience of the city and demonstrates stormwater runoff depression effect. It is necessary to built the landscape which continues with the surrounding green. Ecologically stabilizing green has the high amenity. The development of replanting technology of the artificial ground which fosters the city culture is desired.