• Title/Summary/Keyword: imperfect channel state information

Search Result 37, Processing Time 0.021 seconds

Performance analysis of SWIPT-assisted adaptive NOMA/OMA system with hardware impairments and imperfect CSI

  • Jing Guo;Jin Lu;Xianghui Wang;Lili Zhou
    • ETRI Journal
    • /
    • v.45 no.2
    • /
    • pp.254-266
    • /
    • 2023
  • This paper investigates the effect of hardware impairments (HIs) and imperfect channel state information (ICSI) on a SWIPT-assisted adaptive nonorthogonal multiple access (NOMA)/orthogonal multiple access (OMA) system over independent and nonidentical Rayleigh fading channels. In the NOMA mode, the energy-constrained near users act as a relay to improve the performance for the far users. The OMA transmission mode is adopted to avoid a complete outage when NOMA is infeasible. The best user selection scheme is considered to maximize the energy harvested and avoid error propagation. To characterize the performance of the proposed systems, closed-form and asymptotic expressions of the outage probability for both near and far users are studied. Moreover, exact and approximate expressions of the ergodic rate for near and far users are investigated. Simulation results are provided to verify our theoretical analysis and confirm the superiority of the proposed NOMA/OMA scheme in comparison with the conventional NOMA and OMA protocol with/without HIs and ICSI.

CoMP Transmission for Safeguarding Dense Heterogeneous Networks with Imperfect CSI

  • XU, Yunjia;HUANG, Kaizhi;HU, Xin;ZOU, Yi;CHEN, Yajun;JIANG, Wenyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.110-132
    • /
    • 2019
  • To ensure reliable and secure communication in heterogeneous cellular network (HCN) with imperfect channel state information (CSI), we proposed a coordinated multipoint (CoMP) transmission scheme based on dual-threshold optimization, in which only base stations (BSs) with good channel conditions are selected for transmission. First, we present a candidate BSs formation policy to increase access efficiency, which provides a candidate region of serving BSs. Then, we design a CoMP networking strategy to select serving BSs from the set of candidate BSs, which degrades the influence of channel estimation errors and guarantees qualities of communication links. Finally, we analyze the performance of the proposed scheme, and present a dual-threshold optimization model to further support the performance. Numerical results are presented to verify our theoretical analysis, which draw a conclusion that the CoMP transmission scheme can ensure reliable and secure communication in dense HCNs with imperfect CSI.

Beamforming Optimization for Multiuser Two-Tier Networks

  • Jeong, Young-Min;Quek, Tony Q.S.;Shin, Hyun-Dong
    • Journal of Communications and Networks
    • /
    • v.13 no.4
    • /
    • pp.327-338
    • /
    • 2011
  • With the incitation to reduce power consumption and the aggressive reuse of spectral resources, there is an inevitable trend towards the deployment of small-cell networks by decomposing a traditional single-tier network into a multi-tier network with very high throughput per network area. However, this cell size reduction increases the complexity of network operation and the severity of cross-tier interference. In this paper, we consider a downlink two-tier network comprising of a multiple-antenna macrocell base station and a single femtocell access point, each serving multiples users with a single antenna. In this scenario, we treat the following beamforming optimization problems: i) Total transmit power minimization problem; ii) mean-square error balancing problem; and iii) interference power minimization problem. In the presence of perfect channel state information (CSI), we formulate the optimization algorithms in a centralized manner and determine the optimal beamformers using standard convex optimization techniques. In addition, we propose semi-decentralized algorithms to overcome the drawback of centralized design by introducing the signal-to-leakage plus noise ratio criteria. Taking into account imperfect CSI for both centralized and semi-decentralized approaches, we also propose robust algorithms tailored by the worst-case design to mitigate the effect of channel uncertainty. Finally, numerical results are presented to validate our proposed algorithms.

Robust Precoding and Postcoding for Multicell Multiuser Transmission using Imperfect CSI

  • Nguyen-Le, Hung;Nguyen-Duy-Nhat, Vien;Tang-Tan, Chien;Bao, Vo Nguyen Quoc
    • Journal of Communications and Networks
    • /
    • v.18 no.5
    • /
    • pp.762-772
    • /
    • 2016
  • This paper studies the problem of precoding and post-coding design for multicell multiuser downlink transmissions in the absence of perfect channel state information (CSI). Using statistical information of imperfect CSI, an iterative multiuser multicell transceiver design is formulated by minimizing the mean squared error (MSE) cost function of signal and leakage interference under per-base station power constraint (PBPC). The convergence of the iterative precoding and postcoding algorithm is verified by analytical and empirical results. The proposed precoding and postcoding algorithm offers a low computational complexity and robustness against CSI imperfection.

The Diversity-Multiplexing Tradeoff for Multiple-Antenna Adaptive Decode and Forward Relay Protocols Exploiting Imperfect CSIT (불완전한 채널정보를 사용하는 다중안테나 적응형 복호 후 전송 중계 프로토콜의 Diversity-Multiplexing Tradeoff 분석)

  • Yoon, Han-Sang;Yoon, Eun-Chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.9A
    • /
    • pp.776-783
    • /
    • 2011
  • In this paper, assuming that the transmitter can exploit imperfect channel state information (CSI), the diversity-multiplexing tradeoff (DMT) functions of three adaptive decode-and-forward (DF) relay protocols, each of which uses multiple-antennas at the destination node, at the relay node, or at the source node are derived. When the imperfect CSI qualities for the source-relay link, the relay-destination link, and the source-destination link are subject to asymptotic conditions, the additional diversity gains attainable by exploiting the imperfect CSI at the transmitter for those three adaptive DF relay protocols are investigated.

Resource Allocation and EE-SE Tradeoff for H-CRAN with NOMA-Based D2D Communications

  • Wang, Jingpu;Song, Xin;Dong, Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1837-1860
    • /
    • 2020
  • We propose a general framework for studying resource allocation problem and the tradeoff between spectral efficiency (SE) and energy efficiency (EE) for downlink traffic in power domain-non-orthogonal multiple access (PD-NOMA) and device to device (D2D) based heterogeneous cloud radio access networks (H-CRANs) under imperfect channel state information (CSI). The aim is jointly optimize radio remote head (RRH) selection, spectrum allocation and power control, which is formulated as a multi-objective optimization (MOO) problem that can be solved with weighted Tchebycheff method. We propose a low-complexity algorithm to solve user association, spectrum allocation and power coordination separately. We first compute the CSI for RRHs. Then we study allocating the cell users (CUs) and D2D groups to different subchannels by constructing a bipartite graph and Hungrarian algorithm. To solve the power control and EE-SE tradeoff problems, we decompose the target function into two subproblems. Then, we utilize successive convex program approach to lower the computational complexity. Moreover, we use Lagrangian method and KKT conditions to find the global optimum with low complexity, and get a fast convergence by subgradient method. Numerical simulation results demonstrate that by using PD-NOMA technique and H-CRAN with D2D communications, the system gets good EE-SE tradeoff performance.

Performance Evaluation of STBC OFDM Systems using Channel Information (채널정보를 이용한 STBC OFDM 시스템의 성능 분석)

  • Choi, Seung-Kuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.2
    • /
    • pp.246-252
    • /
    • 2012
  • STBC is a technique where a multiple antenna signals are transmitted. With this technique, antenna diversity can be achieved. The performance of STBC OFDM system using pilot symbol for the channel estimation is analyzed. IEEE 802.16e standards suggest that the BER performance of STBC system can be improved using channel state information. Pilot symbol is used for the channel estimation in OFDM systems. However, imperfect channel estimates in this systems degrade the performance. The performance of this STBC OFDM systems using channel state information, gauged by the average bit error rate, is analyzed considering the channel estimation error.

Optimal Power Allocation for Channel Estimation of OFDM Uplinks in Time-Varying Channels

  • Yao, Rugui;Liu, Yinsheng;Li, Geng;Xu, Juan
    • ETRI Journal
    • /
    • v.37 no.1
    • /
    • pp.11-20
    • /
    • 2015
  • This paper deals with optimal power allocation for channel estimation of orthogonal frequency-division multiplexing uplinks in time-varying channels. In the existing literature, the estimation of time-varying channel response in an uplink environment can be accomplished by estimating the corresponding channel parameters. Accordingly, the optimal power allocation studied in the literature has been in terms of minimizing the mean square error of the channel estimation. However, the final goal for channel estimation is to enable the application of coherent detection, which usually means high spectral efficiency. Therefore, it is more meaningful to optimize the power allocation in terms of capacity. In this paper, we investigate capacity with imperfect channel estimation. By exploiting the derived capacity expression, an optimal power allocation strategy is developed. With this developed power allocation strategy, improved performance can be observed, as demonstrated by the numerical results.

Performance Analysis of Space-time Coded MIMO System with Discrete-rate Adaptive Modulation in Ricean Fading Channels

  • Yu, Xiangbin;Rui, Yun;Yin, Xin;Chen, Xiaomin;Li, Mingqi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.10
    • /
    • pp.2493-2508
    • /
    • 2012
  • The performance of a MIMO system with adaptive modulation (AM) and space-time coding over Ricean fading channels for perfect and imperfect channel state information (CSI) is presented. The fading gain value is partitioned into a number of regions by which the modulation is adapted according to the region the fading gain falls in. Under a target bit error rate (BER) constraint, the switching thresholds for AM are given. Based on these results, we derive the calculation formulae of the theoretical spectrum efficiency (SE) and average BER. As a result, closed-form SE expression and accurate BER expression are respectively obtained. Besides, using the approximation of complementary error function, a tightly closed-form approximation of average BER is also derived to simplify the calculation of accurate theoretical BER. Computer simulation shows that the theoretical SE and BER are in good agreement with the corresponding simulation, and the approximate BER is also close to the accurate one. The results show that the AM scheme in Ricean fading channel provides better SE than that in Rayleigh fading channel due to the direct-path propagation, and has performance degradation in SE and BER for imperfect CSI.

ML Symbol Detection for MIMO Systems in the Presence of Channel Estimation Errors

  • Yoo, Namsik;Back, Jong-Hyen;Choi, Hyeon-Yeong;Lee, Kyungchun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5305-5321
    • /
    • 2016
  • In wireless communication, the multiple-input multiple-output (MIMO) system is a well-known approach to improve the reliability as well as the data rate. In MIMO systems, channel state information (CSI) is typically required at the receiver to detect transmitted signals; however, in practical systems, the CSI is imperfect and contains errors, which affect the overall system performance. In this paper, we propose a novel maximum likelihood (ML) scheme for MIMO systems that is robust to the CSI errors. We apply an optimization method to estimate an instantaneous covariance matrix of the CSI errors in order to improve the detection performance. Furthermore, we propose the employment of the list sphere decoding (LSD) scheme to reduce the computational complexity, which is capable of efficiently finding a reduced set of the candidate symbol vectors for the computation of the covariance matrix of the CSI errors. An iterative detection scheme is also proposed to further improve the detection performance.