• Title/Summary/Keyword: impeller pump

Search Result 341, Processing Time 0.029 seconds

FLOW ANALYSIS OF THE IMPELLER WITH DIFFERENT INLET ANGLES IN THE CENTRIFUGAL PUMP (원심펌프 임펠러 입구각도 변화에 따른 유동해석)

  • Lee, S.H.;Lee, D.R.
    • Journal of computational fluids engineering
    • /
    • v.21 no.1
    • /
    • pp.58-63
    • /
    • 2016
  • This research is to investigate the performance analysis for efficient design with four different inlet angles of the centrifugal pump impeller. Assuming that the rotation speed and exit angle are fixed, Four cases of the centrifugal pumps were numerically analyzed using ANSYS FLUENT. According to the numerical results, head and pump efficiency at inlet angle of 20 degrees was highest. There is no big difference of efficiency at inlet angle of 20 degrees compared to the inlet angle 30 degrees. About 15% of efficiency at inlet angle of 20 degrees is higher than inlet angle of 40 degrees and 31% higher than inlet angle oof 50 degrees. Because there is liner functional relationship between speed and flow rate, suction flow rate at inlet angle of 20 degrees is superior to the inlet angle of 30 degrees as much as 0.89%, inlet angle of 40 degrees as 13%, inlet angle of 50 as 28.4%. Head at inlet angle of 20 degrees is superior to the inlet angle of 30 degrees as much as 0.4%, inlet angle of 40 degrees as 2.7%, inlet angle of 50 degrees as 3.2%. There should exist highest efficiency and also optimal design shape at inlet angle of 20 degrees.

Performance Analysis of the Centrifugal Pump Impeller Using Commercial CFD Code (상용 CFD코드를 이용한 원심펌프 임펠러의 성능해석)

  • Choi, Young-Seok;Lee, Yong-Kab;Hong, Soon-Sam;Kang, Shin-Hyung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.1 s.10
    • /
    • pp.38-45
    • /
    • 2001
  • A commercial CFD code is used to compute the 3-D viscous flow field within the impeller of a centrifugal pump. Several preliminary numerical calculations are carried out to determine the influence of the parameters such as the grid systems, the numerical schemes, the turbulence models and the shape of the vaneless diffusers at the design flow rate. The results of the preliminary study are used for the calculation of the off-design flow conditions. The circumferentially averaged results such as the radial and tangential velocities, the exit flow angle, the slip factor, the static pressure and the total pressure are compared with the experimental data at the impeller exit to discuss the influence of the prescribed parameters.

  • PDF

A Study on Flow Characteristics of Vertical Multi-stage Centrifugal Pump by CFD (CFD에 의한 입형 다단 원심펌프 유동특성에 관한 연구)

  • MO, Jang-Oh;NAM, Koo-Man;KIM, You-taek;LEE, Young-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.402-407
    • /
    • 2002
  • A commercial CFD code is applied to analyze the 3-D viscous flow field within vertical multi-stage centrifugal pimp including impeller with 6 blades and guide vane with 11 blades and is performed by changing flow rate from 10 to $26\;m^3/h$ at the constant 3500rpm. The purpose of this 3-D numerical simulation is to confirm how much the effect of blade inlet angle of guide vane has an influence on the performance of vertical multi-stage centrifugal pimp. these results performed by $20^{\circ},\;30^{\circ}$ inlet angle of guide vane are compared with grundfos performance data. The vertical multi-stage pump consist of the impeller, guide vane, and cylinder. The characteristics such as total pressure coefficient total heat shaft horse power, power efficiency, discharge coefficient are represented according to flow rate changing.

  • PDF

Hydraulic Design of Reactor Coolant Pump Considering Head Curve Slope at Design Point (양정곡선 기울기를 고려한 원자로 냉각재 펌프의 수력설계)

  • Yoo, Il-Su;Park, Mu-Ryong;Yoon, Eui-Soo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.1
    • /
    • pp.18-23
    • /
    • 2011
  • The hydraulic part in reactor coolant pump consists of suction nozzle, impeller, diffuser, and discharge nozzle. Among them, impeller is required to be designed to satisfy performance requirements such as head, NPSHR, and head curve slope at design point. Present study is intended to suggest the preliminary design method sizing the impeller size to satisfy the design requirement particularly including head curve slope at design point. On a basis of preliminary design result, hydraulic components have been designed in detail by CFD and then manufactured in a reduced scale. Experiment in parallel with computational analysis has been executed in order to confirm the hydraulic performance. Comparison results show good agreement with design result, confirming the validity of design method suggested in this study.

A Study on the Vibration Analysis of Impeller and Shaft in Cryogenic Submerged Pump (극저온용 액중펌프의 임펠러 및 샤프트 진동해석에 관한 연구)

  • Kweon, Byung Soo;Lee, Chi-Woo;Shin, Yoo In;Yi, Chung-Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.2
    • /
    • pp.56-62
    • /
    • 2017
  • In this research, reverse engineering was applied to the product manufactured by "Vanzetti" from Italy to develop a localized cryogenic submerged pump used in small-scale LNG liquefaction plants. The results of modal analysis of the impeller and shaft confirmed that the resonance frequency of the impeller and shaft played an important role in the rotor. Modal analysis of the rotor confirmed that the forcing frequency had no influence on the resonance phenomenon.

Study on the erosion-corrosion damages of pump impeller (워터펌트 내에 있는 임펠러의 침식.부식에 관한 연구)

  • Kim, Jae-Wook;Lim, Hee-Chang;Lim, Uh-Joh
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.102-107
    • /
    • 2007
  • The steel impeller placed in a water pump has been studied with the aim to understand corrosion phenomena on the surface responsible for reducing the pumping efficiency of water inside cooling system. This preliminary experiment includes a period (around 1 month) observation with a powered microscope and weight measurements. The experiments are carried out at different conditions of water and mixtures of water and coolants, based on the water contents of 25%, 50%, 75%, and 100% water (pure tap water). From the visual results of microscopy, most of the steel surface is fitted and clear rusty or corrosion phenomena are noticeable as time goes. In addition, the weight loss of the sample specimen submerged in the water is linearly increased, whereas those in the mixtures of water initially gain weight and become almost constant.

  • PDF

Performance Analysis of the Centrifugal Pump Impeller Using Commercial CFD Code (상용 CFD코드를 이용한 원심펌프 임펠러의 성능해석)

  • Choi, Young-Seok;Lee, Yong-Kab;Hong, Soon-Sam;Kang, Shin-Hyung
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.305-311
    • /
    • 2000
  • A commercial CFD code is used to compute the 3-D viscous flow field within the impeller o( a centrifugal pump. Several preliminary numerical calculations are carried out to determine the influence of the parameters such as the grid systems, the numerical schemes, the turbulence models and the shape of the vaneless diffusers at the design flow rate. The results of the preliminary study are used for the calculation of the off-design flow conditions. The circumferentially averaged results such as the radial and tangential velocities, the exit flow angle, the slip factor, the static pressure and the total pressure are compared with the experimental data at the impeller exit to discuss the influence of the prescribed parameters.

  • PDF

Study on the Corrosion Damages of Pump Impeller (펌프 임펠러의 부식 파손에 대한 연구)

  • Kim, J.W.;Lim, H.C.;Kwon, O.B.;Bae, D.S.
    • Journal of Power System Engineering
    • /
    • v.13 no.1
    • /
    • pp.46-52
    • /
    • 2009
  • The steel impeller placed in a water pump has been studied with the aim to understand corrosion phenomena on the surface responsible for reducing the pumping efficiency of water inside cooling system. This preliminary experiment includes a period (over 5 months) observation with a powered microscope and weight measurements. The experiments are carried out at different conditions of water and mixtures of water and coolants, based on the water contents of 25%, 50%, 75%, and 100% water (pure tap water). From the visual results of microscopy, most of the steel surface is fitted and clear rusty or corrosion phenomena are noticeable as time goes. In addition, the weight loss of the sample specimen submerged in the water is linearly increased, whereas those in the mixtures of water initially be constant and then gain weight linearly.

  • PDF

A Numerical Study on the Impeller Meridional Curvature of High Pressure Multistage Pump (고압 다단 펌프의 임펠러 자오면 곡선에 대한 수치 해석적 연구)

  • Kim, Deok Su;Jean, Sang Gyu;Mamatov, Sanjar;Park, Warn Gyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.7
    • /
    • pp.445-453
    • /
    • 2017
  • This paper presents the hydraulic design an impeller and radial diffuser of a high-pressure multistage pump for reverse osmosis. The flow distribution and hydraulic performance for the meridional design of the impeller were analyzed numerically. Optimization was conducted based on the response surface method by varying the hub and shroud meridional curvatures, while maintaining the impeller outlet diameter, outlet width, and eye diameter constant. The analysis results of the head and efficiency with the variation in the impeller meridional profile showed that angle of the front shroud near the impeller outlet (${\varepsilon}Ds$) had the highest effect on head increase, while the hub inlet length ($d_{1i}$) and shroud curvature (Rds) had the highest effect on efficiency. From the meridional profile variation, an approximately 0.5% increase in efficiency was observed compared with the base model (case 25).

A Study on the Performance of a Centrifugal Pump with Two-Phase Flow (기-액 2상유동에 따른 원심펌프 성능변화에 대한 연구)

  • Lee, Jong C.;Kim, Youn J.;Kim, C.-S.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.3 s.8
    • /
    • pp.12-18
    • /
    • 2000
  • In this study, experimental and numerical analyses are carried out to investigate the performance of centrifugal pump with various air admitting conditions. Experiments on the pump performance under air-water two-phase flow are accomplished using a centrifugal pump with semi-open type impeller having three, five and seven blades, respectively. Also, the numerical analysis of turbulent air-water two-phase flow using the finite volume method has been carried out to obtain the pressure, velocities and void fraction on the basis of a so-called bubbly flow model with the constant size and shape of cavity. The results obtained through this study show the reasonable agreements within the range of bubbly flow regime. There are promising developments concerning application of the present study for the flow in a centrifugal pump with two-phase flow conditions and efforts must be followed to improve the turbulence model and two-phase flow model for turbomachinery.

  • PDF