• Title/Summary/Keyword: impeller pump

Search Result 341, Processing Time 0.026 seconds

A study on a design for a centrifugal pump impeller shape (원심펌프 회전차 형상 설계에 대한 연구)

  • 김진환
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.213-220
    • /
    • 1997
  • In this study, a design for a shape of centrifugal pump impeller has been performed using a p.c. under a Windows environment. Interaction between a user and a computer has been easily established using the Visual Basic. In determining an outer diameter of an impeller, steps are divided into two, a basic computational step and a refinment step. In this way user can enter his/her experience at the refinment step and hence can expect to lessen the nonlinear nature inherent to the design. In determining a shape of a side view of an impeller, the Bezier cubic curve has been used, and it can be seen that the Bezier cubic curves are well suited in the shape design under a Windows environment. By simply manipulating the four control points, one can generate various cubic curves among which one is selected. Also, a simple method, which can determine the curved position of an impeller vane, has been developed. These data can be used for final CAD drawings.

  • PDF

Effect of impeller geometrical parameter on the performance of a centrifugal (임펠러 형상변수가 원심펌프 성능에 미치는 영향)

  • Kim, Sung;Choi, Young-Seok;Kim, Joon-Hyung;Yoon, Joon-Yong
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1303-1308
    • /
    • 2008
  • This paper presents effects of impeller geometrical parameters on the performance of a centrifugal pump impeller. The effects of meridional parameters and vane plane development parameters on the performance of the impeller were numerically studied using a commercial CFD code and DOE(design of experiments) software. Geometrical parameters in a method of meridional view and vane plane development were selected and defined to generate the 3D impeller shape. The response variables are defined in a total head and efficiency curve with flow rate. The influences of selected design variables on the various objective functions were examined as a result of the calculation using 2k factorial.

  • PDF

Centrifugal Impeller Blade Shape Optimization Through Numerical Modeling

  • Bellary, Sayed Ahmed Imran;Samad, Abdus
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.4
    • /
    • pp.313-324
    • /
    • 2016
  • Surrogate model based shape optimization methodology to enhance performance of a centrifugal pump has been implemented in this work. Design variables, such as blade number and blade angles defining the pump impeller blade shape were selected and a three-level full factorial design approach was used for efficiency enhancement. A three-dimensional simulation using Reynolds-averaged Navier Stokes (RANS) equations for the performance analysis was carried out after designing the geometries of the impellers at the design points. Standard $k-{\varepsilon}$ turbulence model was used for steady incompressible flow simulations. The optimized impeller incurred lower losses by shifting the trailing edge towards the impeller pressure side. It is observed that the surrogates are problem dependent and most accurate surrogate does not deliver the best design always.

Investigation into the Internal Flow Characteristics of a Pump-turbine Model

  • Singh, Patrick Mark;Chen, Chengcheng;Chen, Zhenmu;Choi, Young-Do
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.4
    • /
    • pp.36-42
    • /
    • 2015
  • This is a study about one of the most widely used hydro machinery all over the world - pump-turbine. The system has an impeller which pumps water to an upper reservoir during the night and the same impeller acts as a runner for turbine mode during the day for providing stable electrical power to the grid. The internal flow analysis is investigated in this study to help understand how the water passes through the passage of the vanes and blades, providing the designer with useful information on the behavior of recirculation flows which could reduce the efficiency of the pump-turbine. The 100 kW pump-turbine model has H = 32 m, $Q=0.336m^3/s$ and $N=1200min^{-1}$. For this study there are 7 blades, 19 stay vanes and 20 guide vanes. From this study, it was observed that this pump-turbine design showed very good internal flow characteristics with no flow separation and no recirculation flows in normal operation mode.

Study on Design of Air-water Two-phase Flow Centrifugal Pump Based on Similarity Law

  • Matsushita, Naoki;Furukawa, Akinori;Watanabe, Satoshi;Okuma, Kusuo
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.2
    • /
    • pp.127-135
    • /
    • 2009
  • A conventional centrifugal pump causes a drastic deterioration of air-water two-phase flow performances even at an air-water two-phase flow condition of inlet void fraction less than 10% in the range of relatively low water flow rate. Then we have developed a two-phase flow centrifugal pump which consists of a tandem arrangement of double rotating cascades and blades of outer cascade have higher outlet angle more than $90^{\circ}$. In design of the two-phase flow pump for various sized and operating conditions, similarity relations of geometric dimensions to hydraulic performances is very useful. The similarity relations of rotational speed, impeller diameter and blade height are investigated for the developed impeller in the present paper. As the results, the similarity law of rotational speed and impeller diameter is clarified experimentally even in two-phase flow condition. In addition, influences of blade height on air-water two-phase flow performances indicate a little difference from the similarity relations.

A Study on the Performance Prediction of Automotive Water Pump with Double Discharge Single Suction (자동차용 양토출 단흡입 워터펌프의 성능 예측에 관한 연구)

  • 허형석;박경석;이기수;원종필
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.27-36
    • /
    • 2004
  • A Numerical analysis has been used to predict the performance in the automotive water pump with double discharge single suction. The influence of parameters such as coolant flow rate, rotational speed, ratio of blade height and clearance has been investigated. Also, the prediction of hydraulic performances such as static pressure rise, shaft power, hydraulic power and pump efficiency is carried out on the water pump including an impeller and a volute casing. A full size water pump test bench has been developed to validate the CFD flow model. Discharge flow rate, suction pressure, discharge pressure, rotational speed and torque measurements are provided. Coolant temperature is 8$0^{\circ}C$, water tank pressure is 1 kgf/$\textrm{cm}^2$ and flow rates vary.

Design and Analysis of Centrifugal Pump using Experimental Factor (실험계수를 이용한 원심 펌프의 설계와 해석)

  • Im, Hyo-Nam;Kim, Jin-Young;Yang, Chang-Jo;Lee, Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.434-440
    • /
    • 2000
  • This study is focused on the performance prediction and design of the centrifugal pump with optimum shape. Design and analysis of centrifugal pump rely on experience of designer due to many fluid mechanical and geometrical variables. In this study, a design method was developed with experimental factors and analysed the method by comparition with 2nd-order vortex panel method. Impeller is the most important component affecting the performance of the centrifugal pump. The predicted total head for three cases, of which designs were determined by this method, agrees well with a particular commercial pump. This study shows that satisfactory performance of an optimal pump shape can be obtained through the automatic design routine.

  • PDF

Reduction of Beating noise at LPLi pump (LPLi 연료펌프의 맥놀이 소음 저감 연구)

  • Gang, Tae-Sik;Sim, Jae-Gi
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.161-165
    • /
    • 2005
  • Until now LPG car has drived used to mixer and vaporizer. So LPG car always has problems back fire and when in the winter. LPG Car's Fuel consumption is rather than gasoline. But LPLi Fuel pump located in the fuel tank is directly injection in the engine. So Fuel consumption is better than LPG mixer system and result to reduced exhaust gas. In this paper to reduction of beating noise of LPLi(liquid phase LPG Injection) fuel pump. General speaking we know, beating noise is occur to near frequency each of pump. So we Modification of RPM through chang of amature turn number and area of dimension of the pump's body.

  • PDF

Hydraulic performance and flow resistance tests of various hydraulic parts for optimal design of a reactor coolant pump for a small modular reactor

  • Byeonggeon Bae;Jaeho Jung;Je Yong Yu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1181-1190
    • /
    • 2023
  • Hydraulic performance and flow resistance tests were performed to confirm the main parameters of the hydraulic instrumentation that can affect the pump performance of the reactor coolant pump. The flow resistance test offers important experimental data, which are necessary to predict the behavior of the primary coolant when the circulation of the reactor coolant pump is stopped. Moreover, the shape of the hydraulic section of the pump, which was considered in the test, was prepared to compare the mixed-flow- and axial-flow-type models, the difference in the number of blades of the impeller and diffuser, the difference in the shape of the impeller blade and its thickness, and the effect of coating at the suction bell. Additionally, five models of the hydraulic part were manufactured for the experiments. In this study, the differences in performance owing to the design factors were confirmed through the experimental results.

Optimization of a Single-Channel Pump Impeller for Wastewater Treatment

  • Kim, Joon-Hyung;Cho, Bo-Min;Kim, Youn-Sung;Choi, Young-Seok;Kim, Kwang-Yong;Kim, Jin-Hyuk;Cho, Yong
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.4
    • /
    • pp.370-381
    • /
    • 2016
  • As a single-channel pump is used for wastewater treatment, this particular pump type can prevent performance reduction or damage caused by foreign substances. However, the design methods for single-channel pumps are different and more difficult than those for general pumps. In this study, a design optimization method to improve the hydrodynamic performance of a single-channel pump impeller is implemented. Numerical analysis was carried out by solving three-dimensional steady-state incompressible Reynolds-averaged Navier-Stokes equations using the shear stress transport turbulence model. As a state-of-the-art impeller design method, two design variables related to controlling the internal cross-sectional flow area of a single-channel pump impeller were selected for optimization. Efficiency was used as the objective function and was numerically assessed at twelve design points selected by Latin hypercube sampling in the design space. An optimization process based on a radial basis neural network model was conducted systematically, and the performance of the optimum model was finally evaluated through an experimental test. Consequently, the optimum model showed improved performance compared with the base model, and the unstable flow components previously observed in the base model were suppressed remarkably well.