• Title/Summary/Keyword: impedance-based method

Search Result 603, Processing Time 0.03 seconds

A Development of High Power Activated Carbon Using the KOH Activation of Soft Carbon Series Cokes

  • Kim, Jung-Ae;Park, In-Soo;Seo, Ji-Hye;Lee, Jung-Joon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.2
    • /
    • pp.81-86
    • /
    • 2014
  • The process parameter in optimized KOH alkali activation of soft carbon series coke material in high purity was set with DOE experiments design. The activated carbon was produced by performing the activation process based on the set process parameters. The specific surface area was measured and pore size was analyzed by $N_2$ absorption method for the produced activated carbon. The surface functional group was analyzed by Boehm method and metal impurities were analyzed by XRF method. The specific surface area was increased over 2,000 $m^2/g$ as the mixing ratio of activation agent increased. The micro pores in $5{\sim}15{\AA}$ and surface functional group under 0.4 meq/g were obtained. The contents of the metal impurity in activated carbon which is the factor for reducing the electrochemical characteristics was reduced less than 100 ppm through the cleansing process optimization. The electrochemical characteristics of activated carbon in 38.5 F/g and 26.6 F/cc were checked through the impedance measuring with cyclic voltammetry scan rate in 50~300 mV/s and frequency in 10 mHz ~100 kHz. The activated carbon was made in the optimized activation process conditions of activation time in 40 minutes, mixing ratio of activation agent in 4.5 : 1.0 and heat treatment temperature over $650^{\circ}C$.

Application of Piezoelectric Smart Structures for Statistical Energy Analysis (압전 지능 구조물을 이용한 통계적 에너지 해석 기법)

  • 김재환;김정하;김재도
    • Journal of KSNVE
    • /
    • v.11 no.2
    • /
    • pp.257-264
    • /
    • 2001
  • In this research, piezoelectric smart structures are applied for SEA(Statistical Energy Analysis), which is well known approach for high frequency analysis. A new input power measurement based on piezoelectric electrical power measurement is proposed and compared with the conventional method in SEA. As an example, a simple aluminum beam on which piezoelectric actuator is attached is considered. By measuring the electrical impedance and electrical current of the piezoelectric actuator, the electrical power given on the actuator is found and this is In turn converted into the mechanical energy. From the measured value of the stored energy of the beam, the Internal loss factor is calculated and this value shows a good agreement with that given by the conventional method as well as the theoretical value. To compare the coupling loss factor, L-shape beam system which consists of a aluminum beam subsystem and a steel beam subsystem coupled by three pin is taken as second example. The input power and stored energy of each subsystem are found by the proposed approach. The coupling loss factor found by the electrical input power obtained from the piezoelectric actuator exhibits similar trend to the value found by the conventional method as well as the theoretical value. In conclusion, the use of SEA for high frequency application of piezoelectric smart structures is Possible. Especially, the input power that is essential for SEA can be found accurately by measuring the electrical input power of the piezoelectric actuator.

  • PDF

Optimal Structural Design of a Tonpilz Transducer Considering the Characteristic of the Impulsive Shock Pressure (충격 특성을 고려한 Tonpilz 변환기의 최적구조 설계)

  • Kang, Kook-Jin;Roh, Yong-Rae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.11
    • /
    • pp.987-994
    • /
    • 2008
  • The optimal structure of the Tonpilz transducer was designed. First, the FE model of the transducer was constructed, that included all the details of the transducer which used practical environment. The validity of the FE model was verified through the impedance analysis of the transducer. Second, the resonance frequency, the sound pressure, the bandwidth, and the impulsive shock pressure of the transducer in relation to its structural variables were analyzed. Third, the design method of $2^n$ experiments was employed to reduce the number of analysis cases, and through statistical multiple regression analysis of the results, the functional forms of the transducer performances that could consider the cross-coupled effects of the structural variables were derived. Based on the all results, the optimal geometry of the Tonpilz transducer that had the highest sound pressure level at the desired working environment was determined through the optimization with the SQP-PD method of a target function composed of the transducer performance. Furthermore, for the convenience of a user, the automatic process program making the optimal structure of the acoustic transducer automatically at a given target and a desired working environment was made. The developed method can reflect all the cross-coupled effects of multiple structural variables, and can be extended to the design of general acoustic transducers.

Thin Film Bulk Acoustic Resonator(FBAR) Bandpass Filter Design Technique Using Genetic Algorithm (유전자알고리즘을 이용한 FBAR RF 대역통과여파기 설계기법)

  • 이정흠;김형동
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.3
    • /
    • pp.10-17
    • /
    • 2003
  • In this paper, genetic algorithm (GA)-based Thin Film Bulk Acoustic Resonator (FBAR) RF filter design technique is proposed. Since the BVD(Butterworth-Van Dyke) lumped element model is valid only around the resonance, FBAR filter design technique based on BVD circuit has an approximate error. Instead of using BVD model, optimizing filter design method utilizes an analytical electrical impedance equation of FBAR. The geometry of FBAR such as thickness of the piezoelectric layer and area which significantly affect the filter response is optimized by GA. US-PCS Rx Bandpass filter obtained by the proposed technique shows a better response comparing with the typical and BVD-based filter.

Model-Based Prediction of Pulsed Eddy Current Testing Signals from Stratified Conductive Structures

  • Zhang, Jian-Hai;Song, Sung-Jin;Kim, Woong-Ji;Kim, Hak-Joon;Chung, Jong-Duk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.6
    • /
    • pp.609-615
    • /
    • 2011
  • Excitation and propagation of electromagnetic field of a cylindrical coil above an arbitrary number of conductive plates for pulsed eddy current testing(PECT) are very complex problems due to their complicated physical properties. In this paper, analytical modeling of PECT is established by Fourier series based on truncated region eigenfunction expansion(TREE) method for a single air-cored coil above stratified conductive structures(SCS) to investigate their integrity. From the presented expression of PECT, the coil impedance due to SCS is calculated based on analytical approach using the generalized reflection coefficient in series form. Then the multilayered structures manufactured by non-ferromagnetic (STS301L) and ferromagnetic materials (SS400) are investigated by the developed PECT model. Good prediction of analytical model of PECT not only contributes to the development of an efficient solver but also can be applied to optimize the conditions of experimental setup in PECT.

Islanding Detection for a Micro-Grid based on the Instantaneous Active and Reactive Powers in the Time Domain (시간영역에서 순시 유효/무효전력을 이용한 마이크로그리드의 단독운전 판단)

  • Lee, Young-Gui;Kim, Yeon-Hee;Zheng, Tai-Ying;Kim, Tae-Hyun;Kang, Yong-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.1
    • /
    • pp.22-27
    • /
    • 2012
  • Correct and fast detection of a micro-grid (MG) islanding is essential to the MG since operation, control and protection of the MG depend on an operating mode i.e., an interconnected mode or an islanding mode. When islanding occurs, the frequency of the point of common coupling (PCC) is not the nominal frequency during the transient state owing to the frequency rise or drop of generators in the MG. Thus, the active and reactive power calculated by the frequency domain based method such as Fourier Transform might contain some errors. This paper proposes an islanding detection algorithm for the MG based on the instantaneous active and reactive powers delivered to the dedicated line in the time domain. During the islanding mode, the instantaneous active and reactive powers delivered to the dedicated line are constants, which depend on the voltage of the PCC and the impedance of the dedicated line. In this paper, the instantaneous active and reactive powers are calculated in the time domain and used to detect islanding. The performance of the proposed algorithm is verified under various scenarios including islanding conditions, fault conditions and load variation using the PSCAD/EMTDC simulator. The results indicate that the algorithm successfully detects islanding for the MG.

Dynamic Time Constant Based High-Performance Insulation Resistance Calculation Method (동적 시정수 기반 고성능 절연 저항 계산 기법)

  • Son, Gi-Beom;Hong, Jong-Phil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.8
    • /
    • pp.1058-1063
    • /
    • 2020
  • This paper presents a new insulation resistance calculation technique to prevent electric shock and fire accidents due to the dielectric breakdown in the primary insulation section of the IT ground system. The solar power generation market is growing rapidly due to the recent expansion of renewable energy and energy storage systems, but as the insulation is destroyed and fire accidents frequently occur, a device for monitoring the insulation resistance state is indispensable to the IT grounding method. Compared to the conventional algorithm that use a method of multiplying a time constant to a fixed coefficient, the proposed insulation resistance calculation method has a fast response time and high accuracy over a wide insulation resistance range by applying a different coefficient according to the values of the insulation impedance. The proposed dynamic time constant based insulation resistance calculation technique reduces the response time by up to 39.29 seconds and improves the error rate by 20.11%, compared to the conventional method.

A Study of the Current Reference Signal Generation Circuit for Single-Phase Harmonic Elimination Systems (단상 전원 고조파 제거 시스템을 위한 기준전류 생성회로에 대한 연구)

  • Jung Done-youl;Park Chong-yeon;Kim Sang-hun;Choi Won-ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.7
    • /
    • pp.335-342
    • /
    • 2005
  • This paper presents a circuit to generate the current reference signal for single-phase harmonic elemination systems. Some of conventional methods for the current reference signal generation based on neural network algorithms. It requires complex circuitry to implement. the simplest method is to use analog filters. but it is difficult to obtain good current reference signals. So, we propose the harmonic detection circuit using GIC(Generalized Impedance Converter) for the purpose of low cost ,simple circuitry and high performance, Simulation and experimental results verify that the proposed circuit has better harmonic detection performance than conventional circuit.

Electrical properties of Si-based La-apatite ceramics with addition of Bismuth (Silicate계 La-아파타이트 산화물의 Bi 첨가에 따른 전기적 특성)

  • Kim, Dae-Young;Jo, Seo-Hyeon;Jeong, Gwang-Ho;Lee, Tae-Ho;Lee, Sung-Gap;Kim, Young-Gon;Lee, Young-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1440-1441
    • /
    • 2011
  • Apatite-lanthanum silicate has attracted considerable interest in recent years due to its high oxide ion conductivity, In this paper, Bi-doped samples $La_8Bi_2(SiO_4)_6O_3$ were prepared by conventional solid-state method and the influences of Bi-dopant content on calcining temperature were reported. The Samples were characterized by X-ray diffraction (XRD) and scanning electron micrograph (SEM) and impedance analysis.

  • PDF

A New Resonant H/B Inverter Having Load Freewheeling Modes (부한 환류모드를 갖는 새로운 반 브리지 공진형인버터)

  • Yeon, Jae-Eul;Cho, Kyu-Min;Oh, Won-Seok;Kim, Hee-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.153-156
    • /
    • 2004
  • This paper presents a new circuit topology of the half-bridge resonant inverter. As the proposed half-bridge inverter can be operated in the load freewheeling modes, pulse width modulation (PWM) control method can be used for the output power control. The proposed half-bridge inverter should keep unity output displacement factor under the load-impedance varying conditions, if a new PWM control scheme based on the resonant frequency tracking algorithm is adopted. In this paper, electrical characteristics, and losses analysis of the proposed half-bridge resonant inverter are described. Simulation and experimental results of the prototype experimental setup to verify the validity of the proposed half-bridge resonant inverter are presented and discussed.

  • PDF