• Title/Summary/Keyword: impedance-based method

Search Result 603, Processing Time 0.028 seconds

Droop Method for High-Capacity Parallel Inverters in Islanded Mode Using Virtual Inductor (독립운전 모드에서 가상 인덕터를 활용한 대용량 인버터 병렬운전을 위한 드룹제어)

  • Jung, Kyo-Sun;Lim, Kyung-Bae;Kim, Dong-Hwan;Choi, Jaeho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.1
    • /
    • pp.81-90
    • /
    • 2015
  • This paper investigates the droop control-based real and reactive power load sharing with a virtual inductor when the line impedance between inverter and Point of Common Coupling (PCC) is partly and unequally resistive in high-capacity systems. In this paper, the virtual inductor method is applied to parallel inverter systems with resistive and inductive line impedance. Reactive power sharing error has been improved by applying droop control after considering each line impedance voltage drop. However, in high capacity parallel systems with large output current, the reference output voltage, which is the output of droop controller, becomes lower than the rated value because of the high voltage drop from virtual inductance. Hence, line impedance voltage drop has been added to the droop equation so that parallel inverters operate within the range of rated output voltage. Additionally, the virtual inductor value has been selected via small signal modeling to analyze stability in transient conditions. Finally, the proposed droop method has been verified by MATLAB and PSIM simulation.

An Analysis of the Frequency-Dependent Resultant Ground Impedance of Vertical Ground Electrodes Installed in Parallel (병렬로 시공된 수직 접지전극의 합성접지임피던스의 주파수의존성 분석)

  • Lee, Bok-Hee;Cho, Sung-Chul;Seong, Chang-Hoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.2
    • /
    • pp.99-105
    • /
    • 2012
  • This paper deals with the experimental results of the frequency-dependent resultant ground impedance of vertical ground electrodes installed with a regular n-polygon. In order to propose an effective method of installing the vertically-driven multiple ground electrodes used to obtain the low ground impedance, the resultant ground impedance of ground electrodes installed with a regular n-polygon were measured as functions of the number of ground electrodes and the frequency of test currents and the results were discussed based on the potential interferences among ground electrodes. As a consequence, the effect of potential interference on the resultant ground impedance of vertical ground electrodes is frequency-dependent and it is significant in the low frequency of a few hundreds [Hz]. The resultant ground impedance of multiple vertical ground electrodes is not decreased in linearly proportion to the number of ground electrodes due to the overlapped potential interferences. Also the distributed-parameter circuit model considering the potential interference, the frequency-dependent relative permittivity and resistivity of soil was proposed. The simulated results of the frequency-dependent resultant ground impedance of multiple vertical ground electrodes are in good agreement with the measured data.

An Enhanced Power Sharing Strategy for Islanded Microgrids Considering Impedance Matching for Both Real and Reactive Power

  • Lin, Liaoyuan;Guo, Qian;Bai, Zhihong;Ma, Hao
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.282-293
    • /
    • 2017
  • There exists a strong coupling between real and reactive power owing to the complex impedances in droop based islanded microgrids (MGs). The existing virtual impedance methods consider improvements of the impedance matching for sharing of the voltage controlled power (VCP) (reactive power for Q-V droop, and real power for P-V droop), which yields a 1-DOF (degree of freedom) tunable virtual impedance. However, a weak impedance matching for sharing of the frequency controlled power (FCP) (real power for $P-{\omega}$ droop, and reactive power for $Q-{\omega}$ droop) may result in FCP overshoots and even oscillations during load transients. This in turn results in VCP oscillations due to the strong coupling. In this paper, a 2-DOF tunable adaptive virtual impedance method considering impedance matching for both real and reactive power (IM-PQ) is proposed to improve the power sharing performance of MGs. The dynamic response is promoted by suppressing the coupled power oscillations and power overshoots while realizing accurate power sharing. In addition, the proposed power sharing controller has a better parametric adaptability. The stability and dynamic performances are analyzed with a small-signal state-space model. Simulation and experimental results are presented to investigate the validity of the proposed scheme.

A New Design Method for Multisection Impedance Transformer Based on the Inverse Scattering (역산란을 이용한 다단 임피던스 트랜스포머의 새로운 설계 방법)

  • 이민수;박영태
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.6 no.4
    • /
    • pp.89-94
    • /
    • 2001
  • A new design method of the microwave multisection impedance transformer is proposed. This method is based on the inverse scattering theory using the frequency domain reflection coefficient of the transformer to be designed. In the first step, the permittivity profile of a virtual one-dimensional dielectric medium is reconstructed using the desired reflection coefficient. In the second step, the transformer which is equivalent to the reconstructed dielectric medium in view of reflection characteristics is synthesized. Theoretically, this method can be used to design the impedance matching transformers with arbitrary passband characteristics within the limit of the Bode-Fano criteria[1]. Our approach is examined for two design examples to show that it is valid.

  • PDF

Heuristic Physical Theory of Diffraction for Impedance Polygon

  • Lee, Keunhwa;Park, Sanghyun;Kim, Kookhyun;Seong, Woojae
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.1
    • /
    • pp.22-32
    • /
    • 2013
  • A heuristic physical theory of diffraction (PTD) for an acoustic impedance wedge is proposed. This method is based on Ufimtsev's three-dimensional PTD, which is derived for an acoustic soft or hard wedge. We modify the original PTD according to the process of physical optics (or the Kirchhoff approximation) to obtain a 3D heuristic diffraction model for an impedance wedge. In principle, our result is equivalent to Luebbers' model presented in electromagnetism. Moreover, our approach provides a useful insight into the theoretical basis of the existing heuristic diffraction methods. The derived heuristic PTD is applied to an arbitrary impedance polygon, and a simple PTD formula is derived as a supplement to the physical optics formula.

Calculation of the Area of Vulnerability to Voltage Sags by using Impedance Building Algorithm (임피던스 행렬 구성법을 이용한 순간전압강하 취약지역의 계산)

  • Park, Jong-Il;Park, Chang-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.1
    • /
    • pp.44-53
    • /
    • 2012
  • This paper presents a method to calculate the area of vulnerability by using the impedance building algorithm. The installation of DG (Distributed Generation) is one of the countermeasures against voltage sags in power systems. In order to estimate the effect of the DG, the voltage sag assessment should be performed based on the area of vulnerability and system fault statistics. To determine the area of vulnerability, system impedance matrix should be calculated. The calculation of the impedance matrix of large systems is time-consuming task. This paper addresses an effective scheme to calculate the area of vulnerability and system impedance matrix.

Impedance spectroscopy for lifetime analysis of OLED

  • Yoon, Chul-Oh;Kim, Hyun-Chul;Yi, Seok-Kyung;Kong, Ung-Gul;Lee, Nam-Heon;Lee, Chang-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.137-140
    • /
    • 2002
  • The frequency response analysis of complex impedance spectra using small perturbation ac impedance spectroscopy is an informative method of OLED performance characterization and lifetime analysis. Using simple RC equivalent circuit mode,l macroscopic nonliniear transport properties of semiconductive emission/transport layers can be analyzed and parameterized. We present the bias voltage dependence and aging effect in impedance spectra measured from an ITO/CuPC/TPD/$Alq_3$/LiF/Al OLED device, and discuss possible failure mechanism based on impedance model parameters.

  • PDF

Analysis of Ground Impedance of a Ground Rod Using Circuit Models (회로모델을 이용한 봉상전극 접지임피던스의 분석)

  • Lee, Bok-Hee;Lee, Tae-Hyung;Eom, Ju-Hong
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.95-99
    • /
    • 2004
  • A systematic approach of measurement, modeling and analysis of grounding system impedance in the field of lightning protection systems is presented. The measurement and analysis of ground impedance are based on a computer aided technique. The magnitude and phase of ground impedance were measured and analyzed by the modified fall-of-potential method and the proposed computer program algerian using the waveforms of the test current and potential rise. The theoretical analysis of ground impedance were performed with the equivalent circuit models, and the theoretical results were compared with the measured data.

  • PDF

Acoustical Properties of Polyester Sound Absorbing Materials (폴리에스테르 흡음재의 음향특성)

  • 주경민;용호택;이동훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1347-1352
    • /
    • 2001
  • In this study, the acoustic properties of polyester sound absorbing materials with three different bulk densities were investigated by calculating and measuring the acoustic parameters in terms of characteristic impedance, propagation constant, and absorption coefficient. For the calculations, Delany and Bazley's empirical equation was used together with the experimentally obtained specific flow resistivities under steady flow conditions. For the experimental measurements, the well-known two-thickness method was accessed. The experimentally measured values of characteristic impedance and propagation constant were generally agreed well with the corresponding calculated values. Based on the comparisons between the calculations and measurements, it was found that the magnitude of the absorption coefficient was closely related to the characteristic impedance and the real part of the propagation constant. Especially, the maximum magnitude of the absorption coefficient was depended upon the imaginary part of the propagation constant indicating the phase change of the propagation constant.

  • PDF

Method for Designing Impedance Network at Quasi Z-Source Inverter (Quasi Z-소스 인버터의 임피던스 네트워크 설계방법)

  • Yang, J.H.;Chun, T.W.;Lee, H.H.;Kim, H.G.;Nho, E.C.
    • Proceedings of the KIPE Conference
    • /
    • 2011.11a
    • /
    • pp.223-224
    • /
    • 2011
  • This paper presents the method to design the inductor and capacitor value considering the ripple component that may be generated by three operating states of the Quasi Z source inverter at the impedance network. Based on the analysis of each operation mode, the equations of the capacitor voltage and inductor current are derived. In order to simplify the design processing, design equations of the impedance network are derived where the capacitor voltage and inductor current are lineared. The validity of the design method is verified with the simulation result using PSIM.

  • PDF