• Title/Summary/Keyword: impedance characteristics

Search Result 1,741, Processing Time 0.029 seconds

Experimental and Analytical Studies on the Characteristics of Fast Switch in Combinations of Various Superconducting Tapes (다양한 선재 조합에 따른 이종 초전도 스위치의 특성 실험 및 분석)

  • Lee, Ji-Ho;Kim, Young-Jae;Na, Jin-Bae;Choi, Suk-Jin;Jang, Jae-Young;Hwang, Young-Jin;Kim, Jin-Sub;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.1
    • /
    • pp.31-35
    • /
    • 2011
  • A Hybrid Fault Current Limiter(FCL) which has more advantages in fast response and thermal characteristics than a simple resistive FCL had been proposed by our group. The Hybrid FCL consists of a resistive FCL for the magnitude of the first peak of fault current, and a fast switch for detecting fault current and generating the repulsive force within a cycle in fault situation. In ideal case, the impedance of the fast switch wound with two other kinds of HTS tape is negligibly zero in normal operation. But, during the fault situation, each HTS tape has different quench characteristics because of asymmetric current distribution. And this phenomenon causes effective flux and this flux opens the switch through the repulsive force applied to a metal plate of the fast switch. The magnitude of the repulsive force affects the switching characteristics of the fast switch. It should be large enough to raise the metal plate up. Otherwise the arc re-out break which are caused by not enough repulsive force to raise the metal plate up can cause unintended operation of the fast switch. In this paper, the numerical calculation of the repulsive force applied to the metal plate of the fast switch in various combinations of HTS tapes was performed by using the short-circuit test and finite element method.

Recovery Characteristics of SFCL According to the Turn's Variation (턴수 변화에 따른 초전도 전류제한기의 회복특성 분석)

  • Han, Tae-Hee;Cho, Yong-Sun;Park, Hyoung-Min;Nam, Guong-Hyun;Lee, Na-Young;Choi, Hyo-Sang;Lim, Sung-Hun;Chung, Dong-Chul;Hwang, Jong-Sun;Choi, Myoung-Ho;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.184-185
    • /
    • 2006
  • The flux-lock type superconducting fault current limiter (SFCL) has the attractive characteristics that can adjust the current limiting level by the turns ratio between two coils. Since the recovery characteristics of a superconducting element m the flux-lock type SFCL were dependent on the turns ratio between two coils, the analysis for the recovery characteristics of this type SFCL together with the current limiting characteristic is necessary to apply it to power system. When the applied voltage and load impedance were same, the recovery time of the superconducting element was 0.32sec in case that the turn's ratio between the primary and secondary windings was 63:21. In the meantime, when the turn's ratio of secondary winding increased to 3 times, the recovery time became longer to 0.58sec.

  • PDF

Study on Channel Characteristics and Feasibility of Narrowband Power Line Communication over Underground Low Voltage Power Lines (지중 저압 전력선의 협대역 전력선통신 채널특성 및 적용성에 대한 연구)

  • Yoo, Hyunwoo;Yoon, Kyung Shub;Kang, Sukyung;Choi, Inji;Park, Byungseok;Kim, Il Han;Kim, Wonsoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.10
    • /
    • pp.874-884
    • /
    • 2013
  • This paper presents in details channel and noise characteristics over narrow bands below 500kHz based on the field tests over underground low voltage(LV) power lines in residential areas in Korean grid. We show that the channel characteristics of narrowband signals over underground LV power line are decent. We first describe methodology of channel characteristic measurements including channel frequency response, noise, and line impedance, and obtain channel characteristics over the underground LV lines in the residential areas. Also based on the measurement results, we adopt the IEEE P1901.2 standard on the FCC High band, and bring up narrow band power line communication network.

Analysis of Fault Current limiting Characteristics According to Fault Type in Integrated Three-Phase Flux-Lock Type Superconducting Fault Current limiting (사고종류에 따른 삼상 일체화된 자속구속형 SFCL의 사고전류제한특성 분석)

  • Park, Chung-Ryul;Lim, Sung-Hun;Park, Hyoung-Min;Cho, Yong-Sun;Choi, Hyo-Sang;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.54-56
    • /
    • 2005
  • In this paper, we investigated the quench characteristics of HTSC elements in the integrated three-phase flux-lock type SFCL according to fault types such as the single-line-to-ground fault, the double-line-to-ground fault, the line-to-line fault and the three-line-to-ground fault. The integrated three-phase flux-lock type SFCL was the upgrade version of the single-phase flux-lock type SFCL. The structure of the integrated three-phase flux-lock type SFCL consisted of three-phase flux-lock reactor wound on an iron core with the ratio of the same turn between coil 1 and coil 2 in each phase. When the SFCL is operated under the normal condition, the flux generated in the iron core is zero because the flux generated between two coils of each single phase is canceled out. Therefore, the SFCL's impedance is zero, and the SFCL has negligible influence on the power system. However, if a fault occurs in any single-phase among three phases, the flux generated in the iron core is not zero any more. The flux makes HTSC elements of all phases quench irrespective of the fault type, which reduces the current of fault phase as well as the current of sound phase. It was observed that the fault current limiting characteristics of the suggested SFCL were dependent on the quench characteristics of HTSC elements in all three phases.

  • PDF

Quench Characteristics of HTSC Elements according to fault types in Integrated Three-Phase (삼상일체화된 자속구속형 SFCL의 사고종류에 따른 소자들의 퀜치 특성)

  • Park, Chung-Ryul;Lee, Jong-Hwa;Park, Sig;Du, Ho-Ik;Lim, Sung-Hun;Choi, Hyo-Sang;Han, Byoung-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.960-962
    • /
    • 2005
  • In this paper, we investigated the quench characteristics of high-Tc superconducting(HTSC) elements in the integrated three-phase flux-lock type superconducting fault current limiter(SFCL) according to fault types such as the single-line-to-ground fault, the double-line-to-ground fault, the line-to-line fault and the triple-line-to-ground fault. The integrated three-phase flux-lock type SFCL is an upgrade version of single-phase flux-lock type SFCL. The structure of the integrated three-phase flux-lock type SFCL consisted of a three-phase flux-lock reactor wound on an iron core with the ratio of the same turn between coil 1 and coil 2 in each phase. When the SFCL is under the normal condition, the flux generated in the iron core is zero because the flux generated between two coils of each single phase is canceled out. Therefore, the SFCL's impedance is zero, and the SFCL has negligible influence on the power system. However, if a fault occurs in any single one of three phases, the flux generated in the iron core is not zero any more. The flux makes HTSC elements of all phases to quench irrespective of the fault type, which reduces the current in fault phase as well as the current of sound phase. It was obtained that the fault current limiting characteristics of the suggested SFCL were dependent on the quench characteristics of HTSC elements in all three phases.

  • PDF

Effects of HA/TiN Coating on the Electrochemical Characteristics of Ti-Ta-Zr Alloys (Ti-Ta-Zr합금의 전기화학적 특성에 미치는 HA/TiN 코팅의 영향)

  • Oh, Mi-Young;Kim, Won-Gi;Choe, Han-Cheol
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.10
    • /
    • pp.691-699
    • /
    • 2008
  • Electrochemical characteristics of Ti-30Ta-xZr alloys coated with HA/TiN by using magnetron sputtering method were studied. The Ti-30Ta containing Zr(3, 7, 10 and 15wt%) were 10 times melted to improve chemical homogeneity by using a vacuum furnace and then homogenized for 24hrs at $1000^{\circ}C$. The specimens were cut and polished for corrosion test and coating, and then coated with HA/TiN, respectively, by using DC and RF-magnetron sputtering method. The analyses of coated surface and coated layer were carried out by using optical microscope(OM), field emission scanning electron microscope(FE-SEM) and X-ray diffractometer(XRD). The electrochemical characteristics were examined using potentiodynamic (-1,500 mV~ + 2,000 mV) and A.C. impedance spectroscopy(100 kHz ~ 10 mHz) in 0.9% NaCl solution at $36.5{\pm}1^{\circ}C$. The microstructure of homogenized Ti-30Ta-xZr alloys showed needle-like structure. In case of homogenized Ti-30Ta-xZr alloys, a-peak was increased with increasing Zr content. The thickness of TiN and HA coated layer showed 400 nm and 100 nm, respectively. The corrosion resistance of HA/TiN-coated Ti-30Ta-xZr alloys were higher than that of the non-coated Ti-30TaxZr alloys, whic hindicate better protective effect. The polarization resistance($R_p$) value of HA/TiN coated Ti-30Ta-xZr alloys showed $8.40{\times}10^5{\Omega}cm^2$ which was higher than that of non-coated Ti-30Ta-xZr alloys.

Characteristics of sound absorption materials by using ecological aggregates (에코골재를 사용한 흡음재의 특성)

  • Kim, Kang-Duk;Ryu, Yu-Gwang;Kim, Yoo-Taek
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.6
    • /
    • pp.264-270
    • /
    • 2008
  • Ecological lightweight aggregates were made by using the wastes come from various industrial fields. Wastes were crushed and pulverized by mills and a certain portions of wastes were mixed and formed by pelletizer like small beads. The formed lightweight aggregates were finally sintered with $1125^{\circ}C$/15 min conditions by using rotary kiln. Lightweight concrete sound absorbers were made of ecological lightweight aggregates K73 (Coal bottom ash 70 wt%: Dredged soil 30 wt%) and K631 (Clay 60 wt%: Stone sludge 30 wt%: Spent bleaching clay 10 wt%). For the reference, lightweight concrete sound absorbers made of DL (German made 'L' company LWA) were also made under the same conditions. Sound absorption characteristics were observed and measured according to the kinds of aggregates, water/cement ratio (W/C=20, 25, and 30%), and designed pore rates (V=20, 25, and 30%). The pore rates of the lightweight concrete sound absorber were turned out to be 5 to 10% higher than designed ones. Absorption coefficient of the lightweight concrete sound absorber by using K631 aggregates with W/C=20% and V=25% conditions was 0.88 at 1000 and 3150 Hz from the measurement by the impedance tube.

Study of Optimization and Characteristics of PSCF3737(Pr0.3Sr0.7Co0.3Fe0.7O3) for IT-SOFC (중저온형 SOFC를 위한 PSCF3737(Pr0.3Sr0.7Co0.3Fe0.7O3) 공기극 물질의 특성 및 최적화께 관한 연구)

  • Park, Kwang-Jin;Lee, Chang-Bo;Kim, Jung-Hyun;Baek, Seung-Wook;Bae, Joong-Myeon
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.3
    • /
    • pp.207-212
    • /
    • 2007
  • [ $PSCF3737(Pr_{0.3}Sr_{0.7}Co_{0.3}Fe_{0.7}O_3)$ ] is a good candidate cathode material for IT-SOFC(intermediate temperature solid oxide fuel cell) because of high MIEC(mixed ionic electronic conductor) conductivity. In this study, the characteristics of PSCF3737 was investigated and optimizations of sintering temperature and thickness for $PSCF3737(Pr_{0.3}Sr_{0.7}Co_{0.3}Fe_{0.7}O_3)$ was carried out. Impedance responses were divided into two parts by frequency region. Middle frequency part (${\sim}10^2\;Hz$) was concerned with oxygen reduction reaction on surface and low frequency part (${\sim}10^{-1}\;Hz$) was related with oxygen diffusion. The reasonable sintering temperature and thickness of cathode were $1200^{\circ}C$ and about $27\;{\mu}m$ with regard to EIS(electrochemical impedance spectroscopy). ASR(areas specific resistance) of optimized cathode is $0.115\;{\Omega}\;cm^2$ at $700^{\circ}C$.

High-frequency characteristics of short-wavelength transmission line on polyether sulfone thin film for a realization of transparent flexible wireless communication device (투명 플렉시블 무선통신 소자구현을 위한 PES 박막상의 단파장 선로에 대한 고주파 특성연구)

  • Yun, Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.353-361
    • /
    • 2016
  • This work presents an investigation of the radio frequency characteristics of an FTLPGS (fishbone-type transmission line employing periodic ground structure) fabricated on PES (polyether sulfone) for the realization of a transparent flexible wireless communication device. According to the results, the FTLPGS on PES showed a shorter wavelength characteristic when compared with a conventional coplanar waveguide. Concretely, the wavelength of the FTLPGS was 1.91 mm at 50 GHz, which was 48.5% of the conventional coplanar waveguide. The bandwidth extraction result showed that the passband of the FTLPGS on PES was 250 GHz. Unlike conventional periodic structures, the characteristic impedance of the FTLPGS on PES also showed a very low frequency dependency. A miniaturization of the RF circuit on the PES substrate was made possible by the FTLPGS on PES having shown characteristic impedance lower than that of conventional transmission lines. These results mean that, with a broadband operation frequency, the FTLPGS on PES is a suitable construction application for the transmission line and distributed passive components.

Design of a Broadband Receiving Active Dipole Antenna Using an Equivalent Model (등가 모델을 이용한 광대역 수신용 능동 다이폴 안테나 설계)

  • Lee, Cheol-Soo;Pack, Jeong-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.1
    • /
    • pp.23-32
    • /
    • 2008
  • In the VHF range, active antennas are widely used for wideband applications due to their small size. Active antenna consists of antenna elements and amplifiers, which are directly connected to each other. Gain and noise-figure characteristics are very important for good sensitivity performance, because it is located at the front end of a receiving system. In this study, we developed an active dipole antenna with 5:1 bandwidth(100${\sim}$500 MHz), which consists of a dipole antenna and a P-HEMT amplifier. To obtain required performances, the antenna and the amplifier should be designed simultaneously. In order for that, we introduced an equivalent port concept to model the 1-port dipole antenna as an equivalent 2-port system. Using the proposed equivalent port, the performance of the active dipole antenna was simulated by the ADS. In order to measure the gain and noise-figure characteristics of the antenna, we utilized the same concept of the two-port equivalent impedance model. The measurement results for typical gain, NF and VSWR in the required frequency band were 8dBi, 9dB and 1.7:1, respectively. The radiation patterns at the principal planes were same as the typical radiation pattern of a dipole antenna. By comparing the simulation results with measured ones, it is confirmed that the proposed methods works well.