• Title/Summary/Keyword: impact toughness

Search Result 399, Processing Time 0.024 seconds

Impact and Wear Behavior of Side Plate of FRP Ship (FRP선박 외판재의 충격 및 마모 거동)

  • Kim, H.J.;Kim, J.D.;Koh, S.W.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.13 no.6
    • /
    • pp.123-128
    • /
    • 2009
  • The effects of temperature and initial crack length on the impact fracture behavior for the side plate material of FRP ship were investigated. And the effects of the counterpart roughness and sliding distance on the volumetric wear of same material were investigated as well. Impact fracture toughness of GF/PE composites displayed maximum value when the temperature of specimen is room temperature and $50^{\circ}C$, and with decreasing the temperature of specimen, impact fracture toughness decreased. Impact fracture energy of GF/EP composites decreased with increasing the initial crack length of specimen, and this value decreased rapidly when the temperature of specimen is lowest, $-25^{\circ}C$. It is believed that sensitivity of notch on impact fracture energy were increased with decreasing the temperature of specimen. With increasing the sliding distance, the transition sliding distance, which displayed different aspect on the friction coefficient and the volumetric wear loss, were found out. Counterpart roughness had a big influence on the wear rate at running in period, however the effect of counterpart roughness became smaller with sliding speed increase in. Volumetric wear loss were increased with increasing the applied load and the counterpart roughness.

  • PDF

Effect of Tempering Temperature on the Microstructure and Mechanical Properties of ARMOX 500T Armor Plate (템퍼링 온도에 따른 ARMOX 500T 장갑재의 미세조직과 기계적 특성)

  • Lim, Hyeon-Seok;Lee, Jimin;Song, Young-Beum;Kim, Hong-Kyu;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.27 no.7
    • /
    • pp.359-363
    • /
    • 2017
  • The resistance of metallic materials to ballistic penetration generally depends on a number of parameters related to projectile, impact, and armor plate. Recently, armor materials have been required to have various properties such as hardness, strength, and impact toughness in order to maintain an excellent ballistic resistance even after impact. In the present study, the influence of tempering on the microstructure and mechanical properties of an ARMOX 500T armor steel plate was investigated and then compared with those of S45C and SCM440 steels. As the tempering temperature increased, the hardness and strength gradually decreased, whereas the ductility and impact toughness clearly increased because the hardness, tensile, and impact properties were affected by the microstructural evolution and precipitation occurring during tempering. On the other hand, temper embrittlement appeared at tempering temperatures of 300 to $400^{\circ}C$ for the impact specimens tested at low temperature.

Effect of χ Phase on the Impact Toughness of 25Cr-7Ni-4Mo Super Duplex Stainless Steel (25Cr-7Ni-4Mo 수퍼 2상 스테인리스강의 충격인성에 미치는 χ의 영향)

  • Kang, C.Y.;Han, H.S.;Lee, S.H.;Han, T.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.25 no.2
    • /
    • pp.74-79
    • /
    • 2012
  • This study has been carried out to investigate the precipitation behavior of ${\chi}$ phase and effect of ${\chi}$ phase precipitation on the impact toughness of 25%Cr-7%Ni-4%Mo super duplex stainless steel. It was proved that the ${\chi}$ phase was a intermetallic compound, which represented the higher chromium and molybdenum concentration than the matrix phases, and also showed the higher molybdenum concentration than the ${\sigma}$ phase. The ${\chi}$ phase was precipitated at the interface between ferrite and austenite or inside the ferrite matrix in the early stage of aging. The number of ${\chi}$ phase precipitates increased with increasing aging time, however, after showing the maximum value, the number was decreased due to the gradual transformation of ${\chi}$ phase into ${\sigma}$-phase. Aging ferrite phase was decomposed by the $r^2$ phase and ${\sigma}$-phase. Impact toughness rapidly decreased with time in the initial stage of aging at ${\chi}$ phase start to precipitate. Thus, the impact toughness was greatly influence for the precipitation of ${\chi}$ phase.

Estimation of fracture toughness of cast steel container from Charpy impact test data

  • Bellahcenea, Tassadit;Aberkane, Meziane
    • Steel and Composite Structures
    • /
    • v.25 no.6
    • /
    • pp.639-648
    • /
    • 2017
  • Fracture energy values KV have been measured on cast steel, used in the container manufacture, by instrumented Charpy impact testing. This material has a large ductility on the upper transition region at $+20^{\circ}C$ and a ductile tearing with an expended plasticity before a brittle fracture on the lower transition region at $-20^{\circ}C$. To assess the fracture toughness of this material we use, the $K_{IC}$-KV correlations to measure the critical stress intensity factor $K_{IC}$ on the lower transition region and the dynamic force - displacement curves to measure the critical fracture toughness $J{\rho}_C$, the essential work of fracture ${\Gamma}_e$ on the upper transition region. It is found, using the $K_{IC}$-KV correlations, that the critical stress intensity factor $K_{IC}$ remains significant, on the lower transition region, which indicating that our testing material preserves his ductility at low temperature and it is apt to be used as a container's material. It is, also, found that the $J_{\rho}-{\rho}$ energetic criterion, used on the upper transition region, gives a good evaluation of the fracture toughness closest to those found in the literature. Finally, we show, by using the ${\Gamma}_e-K_{IC}$ relation, on the lower transition region, that the essential work of fracture is not suitable for the toughness measurement because the strong scatter of the experimental data. To complete this study by a numerical approach we used the ANSYS code to determine the critical fracture toughness $J_{ANSYS}$ on the upper transition region.

An Experimental Study on Toughening of Unsaturated Polyester Mortar (불포화 폴리에스테르 모르터의 인성강화에 관한 실험 연구)

  • 김화중;박준철;윤명덕;윤요현;최영준
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1115-1120
    • /
    • 2000
  • The purpose of this study is to investigate toughening of unsaturated polyester resin by addition of liquid rubber. In general, unsaturated polyester liquid has strong brittleness in spite of if high strength Therefore; it is difficult use polyurethane liquid rubber for the place where impact resistance is demanded. In this study, it was evaluated strength, impact resistance and fracture toughness by adding to polyurethane liquid rubber(0~25%). As a result, it was found that a tendency to be increase bearing impact and fracture toughness as polyurethane liquid rubber increased but strength was decreased.

Effect of fiber content on the performance of UHPC slabs under impact loading - experimental and analytical investigation

  • Muhammad Umar Khan;Shamsad Ahmad;Mohammed A. Al-Osta;Ali Husain Algadhib;Husain Jubran Al-Gahtani
    • Advances in concrete construction
    • /
    • v.15 no.3
    • /
    • pp.161-170
    • /
    • 2023
  • Ultra-high-performance concrete (UHPC) is produced using high amount of cementitious materials, very low water/cementitious materials ratio, fine-sized fillers, and steel fibers. Due to the dense microstructure of UHPC, it possesses very high strength, elasticity, and durability. Besides that, the UHPC exhibits high ductility and fracture toughness due to presence of fibers in its matrix. While the high ductility of UHPC allows it to undergo high strain/deflection before failure, the high fracture toughness of UHPC greatly enhances its capacity to absorb impact energy without allowing the formation of severe cracking or penetration by the impactor. These advantages with UHPC make it a suitable material for construction of the structural members subjected to special loading conditions. In this research work, the UHPC mixtures having three different dosages of steel fibers (2%, 4% and 6% by weight corresponding to 0.67%, 1.33% and 2% by volume) were characterized in terms of their mechanical properties including facture toughness, before using these concrete mixtures for casting the slab specimens, which were tested under high-energy impact loading with the help of a drop-weight impact test setup. The effect of fiber content on the impact energy absorption capacity and central deflection of the slab specimens were investigated and the equations correlating fiber content with the energy absorption capacity and central deflection were obtained with high degrees of fit. Finite element modeling (FEM) was performed to simulate the behavior of the slabs under impact loading. The FEM results were found to be in good agreement with their corresponding experimentally generated results.

The effects of PWHT on the toughness of weld HAZ in Cu-containing HSLA-100 steel (Cu를 함유한 HSLA-100강 용접 열 영향부의 인성에 미치는 후열처리의 영향)

  • 박태원;심인옥;김영우;강정윤
    • Journal of Welding and Joining
    • /
    • v.13 no.4
    • /
    • pp.55-64
    • /
    • 1995
  • A study was made to examine the effects of postweld heat treatment(PWHT) on the toughness and microstructures in the weld heat affected zone(HAZ) of Cu-bearing HSLA-100 steel. The Gleeble thermal/mechanical simulator was used to simulate the weld HAZ. The details between toughness and PWHT of HAZ were studied by impact test, optical microscopy(O.M.), scanning electron microscopy (SEM), transmission electron microscopy(TEM) and differential scanning calorimetry(DSC). The decrease of HAZ toughness in single thermal cycle comparing to base plate is ascribed to the coarsed-grain formed by heating to 1350.deg.C. The increase of HAZ toughness in double thermal cycle comparine to single thermal cycle is due to the fine ferrite(.alpha.) grain transformed from austenite(.gamma.)formed by heating to .alpha./.gamma. two phase region. Cu precipitated during aging for increasing the strength of base metal is dissolved during single thermal cycle to 1350.deg.C and is precipitated little on cooling and heating during subsequent weld thermal cycle. It precipitates by introducing PWHT. Thus, the decrease of toughness in triple thermal cycle of $T_{p1}$ = 1350.deg.C, $T_{p2}$ = 800.deg.C and $T_{p3}$ = 500.deg.C does not occur owing to the precipitation of Cu. The behaviors of Cu=precipitates in HAZ is similar to that in base plate. PWHT at 550.deg.C shows highest hardness and lowest toughness, whereas PWHT at 650.deg.C shows reasonable toughness, which improves the toughness of as-welded state.state.

  • PDF

The effection of alloying elements on welding characteristics of stainless steel (스테인리스강의 용접 특성에 미치는 합금원소의 영향)

  • 정호신;배동수;엄동석
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.16-23
    • /
    • 1997
  • Stainless steel are widely applicable in various engineering fields for its exellent corrosion and impact ressistance. Austenitic weld metal has some ferrite for preventing solidification cracking by ASME specification. Several family of austenic stainless steel contains varying ferrite contents. But ferrite in austenic stainless steels is adversely affect weld metal toughness and since fully austenic grades are known to have good toughness. Austenic stainless steel has various alloying addition for improving corrosion resistance, impact toughness and solidification crack resistance. The effect of various alloying elements are not found to be clear in present. From this view of point, this study tried to establish the criteria of alloy design for austenic stainless steel by controlling primary solidification mode and clarifying the effect of several alloying elements.

  • PDF

Mechanical Properties & Fracture Toughness of Austempered Gray Cast Iron(AGI) by Permanent Mould Casting (금형주조한 오스템퍼 회주철의 기계적성질 및 파괴인성)

  • Yi, Young-Sang;Lee, Ha-Sung;Kang, Dong-Myeong
    • Journal of Korea Foundry Society
    • /
    • v.15 no.3
    • /
    • pp.291-297
    • /
    • 1995
  • The mechanical properties and fracture toughness of permanent mold cast austempered gray cast iron(AGI) were compared to those of sand cast AGI. The iron was melted to eutectic composition in order to get better castability especially in permanent mold casting. Specimens prepared for tensile, impact and fracture toughness test were austenitized at $900^{\circ}C$ and austempered at $270^{\circ}C$ and $370^{\circ}C$ for 1 hour. The strength, impact and fracture toughness of permanent mold cast AGI were found to be superior to those of sand cast AGI. The maximum value of 836 MPA in tensile strength, was obtained at the austempering temperature of $270^{\circ}C$. But ductility of AGI was not improved by permanent mold casting.

  • PDF

Effect of Temperature on the Charpy Impact and CTOD Values of Type 304 Stainless Steel Pipeline for LNG Transmission

  • Baek, Jong-Hyun;Kim, Young-Pyo;Kim, Woo-Sik;Kho, Young-Tai
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.8
    • /
    • pp.1064-1071
    • /
    • 2002
  • Stainless steel pipe of type 304 the with a wall thickness of 26.9 mm and the outer diameter 406.4 mm is welded by manual arc welding process. Mechanical properties and fracture toughness of type 304 stainless steel are investigated in the temperature ranging from room temperature to -162$^{\circ}C$ The results obtained are summarized as follows. The tensile strength noticeably increases as the temperature becomes lower while the yield strength is relatively insensitive to temperature. The Charpy impact energy and CTOD values become higher in the case that crack propagation direction is aligned to the transverse axis upon the rolling direction than longitudinal direction. The drop of fracture toughness is associated with the noticeable diminution of plastic component as temperature seduces from room temperature to -162$^{\circ}C$ .