• Title/Summary/Keyword: impact tests

Search Result 1,771, Processing Time 0.028 seconds

Influence of the Cr-Carbides on the Mechanical Characteristics during Isothermal Heat-Treatment of the Mod.9Cr-1Mo Steel (Mod.9Cr-1Mo강의 항온변태시 기계적 특성변화에 미치는 Cr탄화물의 영향)

  • Hur, Sung-Kang;Lee, Jae-Hyun;Gu, Ji-Ho;Shin, Kee-Sam;He, Yinsheng;Shin, Jong-Ho
    • Korean Journal of Materials Research
    • /
    • v.22 no.1
    • /
    • pp.46-53
    • /
    • 2012
  • In this study, mechanical tests and microstructural analyses including TEM analyses with EDX of precipitates in modified 9Cr-1Mo steel were carried out to determine the cause of embrittlement observed after heat-treatment, which limits the usage of the alloy for power plants. Mod. 9Cr-1Mo steel specimens at austenite temperature were quenched to the molten salt baths at $760^{\circ}C$ and $700^{\circ}C$, in which the specimens were kept for 10 min ~ 10 hr with subsequent air-cooling. Impact tests showed that the impact value dropped abruptly when the specimens were kept longer than 30 min at $\sim760^{\circ}C$ reaching to minima in about 1 hr, and then increasing at further retention. The tensile strength of the specimens reached the minimum value without much change afterward, whereas the values of elongation showed the same trend as that of the impact value. The isothermally heat-treated steel at $700^{\circ}C$ also showed a minimum impact value in about 1 hr. These results suggest that the isothermal heattreatment at 760 and $700^{\circ}C$ for about 1 hr induces temporal embrittlement in Mod. 9Cr-1Mo steel. The microstructural examination of all the specimens with extraction replica of the carbides revealed that the specimens with temporal embrittlement had $Cr_2C$, indicating that the cause of the embrittlement was the precipitation of the $Cr_2C$. In addition, TEM/EDX results showed that the Fe/Cr ratio was 0.033 to 0.055 for $Cr_2C$, whereas it was 0.48 to 0.75 for $Cr_{23}C_6$, making the distinction of the $Cr_2C$ and $Cr_{23}C_6$ possible even without direct electron diffraction analyses.

The Use of Traditional Algorithmic Versus Instruction with Multiple Representations: Impact on Pre-Algebra Students' Achievement with Fractions, Decimals, and Percent (전통적 알고리즘 교수법과 다양한 표상을 활용한 교수법의 비교: 분수, 소수, 퍼센트 내용을 중심으로)

  • Han, Sunyoung;Flores, Raymond;Inan, Fethi A.;Koontz, Esther
    • School Mathematics
    • /
    • v.18 no.2
    • /
    • pp.257-275
    • /
    • 2016
  • The purpose of this study was to investigate the impact of multiple representations on students' understanding of fractions, decimals, and percent. The instructional approach integrating multiple representations was compared to traditional algorithmic instruction, a form of direct instruction. To examine and compare the impact of multiple representations instruction with traditional algorithmic instruction, pre and post tests consisting of five similar items were administered with 87 middle school students. Students' scores in these two tests and their problem solving processes were analyzed quantitatively and qualitatively. The quantitative results indicated that students taught by traditional algorithmic instruction showed higher scores on the post-test than students in the multiple representations group. Furthermore, findings suggest that instruction using multiple representations does not guarantee a positive impact on students' understanding of mathematical concepts. Qualitative results suggest that the limited use of multiple representations during a class may have hindered students from applying their use in novel problem situations. Therefore, when using multiple representations, teachers should employ more diverse examples and practice with multiple representations to help students to use them without error.

Performance Assessment for Rockfall Protection Systems I: Performance Assessment Criteria (낙석방지울타리의 성능평가 I: 성능평가기준)

  • Kim, Kee Dong;Ko, Man Gi;Kim, Dal Sung;Moon, Byung Gab
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.1
    • /
    • pp.63-76
    • /
    • 2015
  • The purpose of this study is to suggest performance levels, a test method, and assessment criteria for the performance assessment to allow standardized tests for rockfall protection systems. The range of rockfall impact energy was determined by using domestic rockfall data and a total of 9 performance levels from 50kJ to 1500kJ were suggested. The performance assessment is implemented by two types of full-scale free-fall impact tests to investigate the serviceability and the maximum capacity as in European and American standards. It was considered to be reasonable that the specimens of rockfall protection systems consist of 3 spans and the concrete block of a polyhedron with 26 faces, similar to spheres, impacts at the center of a center span. Assessment criteria were constructed to investigate whether a rockfall penetrated rockfall protection systems and whether the deformed specimen encroached on the roadway or obstructed the vehicle traffic.

Role of Post Weld Treatment Methods in the Improvement of Fatigue Life for T-type Welded Structures Made by SM 50A Steel (SM 50A 강으로 제작된 T-형 용접형상의 용접후처리 방법이 피로수명 증가에 작용하는 역할)

  • Han, Chang-Wan;Lee, Jae-Hoon;Song, Jun-Hyouk;Lee, Hyun-Woo;Park, Seong-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.3
    • /
    • pp.307-312
    • /
    • 2012
  • This study aims to investigate the effect of the post weld treatments on the fatigue life of T-type welded structure made by a SM50A steel material, generally used for excavators, because changes in the geometry, material and surface properties of welded regions affect the fatigue life of welded structures. T-type test specimens were prepared by the CO2 welding of rolled steel plates (SM50A steel) with a thickness of 10 mm at a welding speed of 30 cm/min and these Ttype welded specimens were further treated by UIT (Ultrasonic Impact Treatment) and/or toegrinding post welding treatment methods. In order to investigate improvements on the fatigue life of the samples. 3-point bending fatigue tests were conducted with a stress ratio of R=0.1 under a cyclic loading environment at a frequency of 5 Hz, via a hydraulic fatigue testing machine (${\pm}100\;kN$, MTS 809). The tests were performed at room temperature. The fatigue life of UIT specimens was approximately 25 times longer than that of as-welded specimens at a stress amplitude of 281 MPa, while toe-grinding specimens exhibited 4.15 times longer fatigue life. The current results could provide important guidelines to determine the proper post weld treatment methodologies of T-type welded parts for excavators with a satisfactory fatigue life although under severe operating conditions.

Performance Tests of Epoxy-coated Reinforcing Bars : Mechanical Properties (에폭시 도막 철근의 기계적 성능에 관한 실험적 연구)

  • 최완철;김채훈;신영수;홍기섭
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.3
    • /
    • pp.173-179
    • /
    • 1994
  • Test results to evaluate the rr~echanical properties of epoxy-coated reinforcing bars are described. Tests include adhesion, impact, bend, and abrasion test of epoxy coating to reinforcing steel, specified in relevant KS and ASTM standards. Three nomnal thicknesses of epoxy coating, $120{\mu}m$, $220{\mu}m$, $300{\mu}m$ are used. The results show good adhesion and abrasion resistance satisfying the requirements. The results also show faily good bendability. However, the thicker the coating, the weaker the adhesion is. Impact resistance is in the tolerable range, but it is recorrmerided that careful treatments are required during handling of epoxy-coated bars. From the results, epoxy-coated bars, with a coating thickness ranging from $150{\mu}m$ to $300{\mu}m$, should well perform for fabrication in field construction.

The crack propagation of fiber-reinforced self-compacting concrete containing micro-silica and nano-silica

  • Moosa Mazloom;Amirhosein Abna;Hossein Karimpour;Mohammad Akbari-Jamkarani
    • Advances in nano research
    • /
    • v.15 no.6
    • /
    • pp.495-511
    • /
    • 2023
  • In this research, the impact of micro-silica, nano-silica, and polypropylene fibers on the fracture energy of self-compacting concrete was thoroughly examined. Enhancing the fracture energy is very important to increase the crack propagation resistance. The study focused on evaluating the self-compacting properties of the concrete through various tests, including J-ring, V-funnel, slump flow, and T50 tests. Additionally, the mechanical properties of the concrete, such as compressive and tensile strengths, modulus of elasticity, and fracture parameters were investigated on hardened specimens after 28 days. The results demonstrated that the incorporation of micro-silica and nano-silica not only decreased the rheological aspects of self-compacting concrete but also significantly enhanced its mechanical properties, particularly the compressive strength. On the other hand, the inclusion of polypropylene fibers had a positive impact on fracture parameters, tensile strength, and flexural strength of the specimens. Utilizing the response surface method, the relationship between micro-silica, nano-silica, and fibers was established. The optimal combination for achieving the highest compressive strength was found to be 5% micro-silica, 0.75% nano-silica, and 0.1% fibers. Furthermore, for obtaining the best mixture with superior tensile strength, flexural strength, modulus of elasticity, and fracture energy, the ideal proportion was determined as 5% micro-silica, 0.75% nano-silica, and 0.15% fibers. Compared to the control mixture, the aforementioned parameters showed significant improvements of 26.3%, 30.3%, 34.3%, and 34.3%, respectively. In order to accurately model the tensile cracking of concrete, the authors used softening curves derived from an inverse algorithm proposed by them. This method allowed for a precise and detailed analysis of the concrete under tensile stress. This study explores the effects of micro-silica, nano-silica, and polypropylene fibers on self-compacting concrete and shows their influences on the fracture energy and various mechanical properties of the concrete. The results offer valuable insights for optimizing the concrete mix to achieve desired strength and performance characteristics.

Investigation of pile group response to adjacent twin tunnel excavation utilizing machine learning

  • Su-Bin Kim;Dong-Wook Oh;Hyeon-Jun Cho;Yong-Joo Lee
    • Geomechanics and Engineering
    • /
    • v.38 no.5
    • /
    • pp.517-528
    • /
    • 2024
  • For numerous tunnelling projects implemented in urban areas due to limited space, it is crucial to take into account the interaction between the foundation, ground, and tunnel. In predicting the deformation of piled foundations and the ground during twin tunnel excavation, it is essential to consider various factors. Therefore, this study derived a prediction model for pile group settlement using machine learning to analyze the importance of various factors that determine the settlement of piled foundations during twin tunnelling. Laboratory model tests and numerical analysis were utilized as input data for machine learning. The influence of each independent variable on the prediction model was analyzed. Machine learning techniques such as data preprocessing, feature engineering, and hyperparameter tuning were used to improve the performance of the prediction model. Machine learning models, employing Random Forest (RF), eXtreme Gradient Boosting (XGB), and Light Gradient Boosting Machine (LightGBM, LGB) algorithms, demonstrate enhanced performance after hyperparameter tuning, particularly with LGB achieving an R2 of 0.9782 and RMSE value of 0.0314. The feature importance in the prediction models was analyzed and PN was the highest at 65.04% for RF, 64.81% for XGB, and PCTC (distance between the center of piles) was the highest at 31.32% for LGB. SHAP was utilized for analyzing the impact of each variable. PN (the number of piles) consistently exerted the most influence on the prediction of pile group settlement across all models. The results from both laboratory model tests and numerical analysis revealed a reduction in ground displacement with varying pillar spacing in twin tunnels. However, upon further investigation through machine learning with additional variables, it was found that the number of piles has the most significant impact on ground displacement. Nevertheless, as this study is based on laboratory model testing, further research considering real field conditions is necessary. This study contributes to a better understanding of the complex interactions inherent in twin tunnelling projects and provides a reliable tool for predicting pile group settlement in such scenarios.

Screening in the Era of Economic Crisis: Misperceptions and Misuse from a Longitudinal Study on Greek Women Undergoing Benign Vacuum-assisted Breast Biopsy

  • Domeyer, Philip John;Sergentanis, Theodoros Nikolaos;Katsari, Vasiliki;Souliotis, Kyriakos;Mariolis, Anargiros;Zagouri, Flora;Zografos, George Constantine
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.9
    • /
    • pp.5023-5029
    • /
    • 2013
  • Background: To evaluate knowledge about screening tests and tests without proven screening value in a Greek Breast Unit population undergoing benign vacuum-assisted breast biopsy (VABB). Materials and Methods: This study included 81 patients. Three knowledge-oriented items (recommended or not, screening frequency, age of onset) were assessed. Regarding screening tests two levels of knowledge were evaluated: i). crude knowledge (CK), i.e. knowledge that the test is recommended and ii). advanced knowledge (AK), i.e. correct response to all three knowledge-oriented items. Solely CK was evaluated for tests without proven screening value. Risk factors for lack of knowledge were assessed with multivariate logistic regression. A second questionnaire was administered 18 months after VABB to assess its impact on the performance of tests. Results: Concerning screening tests considerable lack of AK was noted (mammogram, 60.5%; Pap smear, 59.3%; fecal occult blood testing, 93.8%; sigmoidoscopy, 95.1%). Similarly lack of CK was documented regarding tests without proven screening value (breast self-examination, 92.6%; breast MRI, 60.5%; abdominal ultrasound, 71.6%; barium meal, 48.1%; urine analysis, 90.1%; chest X-Ray, 69.1%; electrocardiogram, 74.1%; cardiac ultrasound, 75.3%). Risk factors for lack of AK were: place of residence (mammogram), age (Pap smear), personal income (sigmoidoscopy); risk factors for lack of CK included number of offspring (breast MRI, chest X-Ray), BMI (abdominal ultrasound), marital status (urine analysis), current smoking status (electrocardiogram). VABB's only effect was improvement in mammogram rates. Conclusions: A considerable lack of knowledge concerning screening tests and misperceptions regarding those without proven value was documented.

Numerical Study on Performance Evaluation of Impact Beam for Automotive Side-Door using Fiber Metal Laminate (자동차 측면 도어의 섬유금속적층판을 적용한 임펙트 빔의 수치해석에 의한 성능 평가)

  • Park, Eu-Tteum;Kim, Jeong;Kang, Beom-Soo;Song, Woo-Jin
    • Composites Research
    • /
    • v.30 no.2
    • /
    • pp.158-164
    • /
    • 2017
  • The fiber metal laminate is a type of hybrid materials laminated thin metallic sheets with fiber reinforced plastic sheets. The laminate has been researched or applied in automotive and aerospace industries due to their outstanding impact absorbing performance in view of light weight aspect. Specially, the replacement of side-impact beam as the fiber reinforced plastic has been researched actively. The objective of this paper is the primitive investigation in the development of side-door impact beam using the fiber metal laminate. First, the three-point bending simulations were conducted to decide the shape of impact beam using the numerical analysis. Next, two cases impact beam (pure DP 980 and fiber metal laminate) were installed in the side-door, and then the bending tests (according to FMVSS 214S) were simulated using the numerical analysis. It is noted that the side-door impact beam can be replaced with the fiber metal laminate sufficiently based on the numerical analysis results.

Effect of Different Energy Frames on the Impact Velocity of Strain Energy Frame Impact Machine (에너지 프레임 종류에 따른 변형에너지 프레임 충격시험장치의 충격속도)

  • PARK, Seung Hun;PARK, Jun Kil;TRAN, Tuan Kiet;KIM, Dong Joo
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.363-375
    • /
    • 2015
  • This research investigated the effects of diameter and material of energy frame on the impact velocity or strain rate of Strain Energy Frame Impact Machine (SEFIM). The impact speed of SEFIM have been clearly affected by changing the diameter and material of the energy frame. The reduced diameter of the energy frame clearly increased the impact velocity owing to the higher strain at the moment of coupler breakage. And, titanium alloy energy frame produced the fastest speed of impact among three materials including steel, aluminum and titanium alloys because titanium alloy has faster wave velocity than steel. But, aluminium energy frame was broken during impact tests. In addition, the tensile stress versus strain response of high performance fiber reinforced cementitious composites at higher and wider strain rates between 10 and 72 /sec was successfully obtained by using four different energy frames.