• Title/Summary/Keyword: impact test method

Search Result 1,250, Processing Time 0.029 seconds

Standardization of Impact Test Methods of Non-bearing Lightweight Wall for Building (건축용 비내력 경량벽체의 내충격성 시험방법의 표준화)

  • Kim, Ki-Jun;Choi, Soo-Kyung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.181-182
    • /
    • 2015
  • The use of non-bearing light weight wall has increased recently due to the increase of high-rise buildings and supply of long-life housing. Light weight wall has advantages such as reducing the self-weight of the building, convenience in installation, and shortening construction period, however, must have a sufficient strength to external force. This study standardized the impact resistance test method for light weight walls by using the actual impact load obtained through load analysis test in previous studies. The impact resistance test method was divided into the test method that uses soft body and the one that uses hard body. The size of specimen was set up as height 2.4m and width 3.0m. The size and shape of the body followed those used in BS 5234-2 and so on for the compatibility with the test method used overseas. The judgment criteria for impact resistance based on test results were not defined uniformly as the assessment of functional damage can vary depending on the type of material, structural method, purpose of wall, and so on even when the same impact load was applied.

  • PDF

A Study of Development and Application for Side Impact Sled Test (모의 측면 충돌 시험 기법 개발 및 응용)

  • 최현진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.138-144
    • /
    • 2004
  • Occupant protection in the side impact of a vehicle becomes one of the most important issues today. So, to reduce development time and cost, it needs test equipment which conducts an accurate simulation of the side impact crash. This paper describes a new test method for side impact, which utilizes a standard 12inch-HYGE-type sled facility. If a side impact sled test can simulate vehicle intrusion very well, it will contribute to develop full-scale side impact crash performance. The newly developed sled test method enables simulation for dummy motion, injury, door velocity, trim crack, and vehicle structure to be accurate. Ant also this sled test method can be applied to the development of side air-bag.

A Consideration on the Results of Side Impact and Pole Side Impact Tests in 2011 KNCAP (2011 KNCAP 측면충돌 및 기둥측면충돌 시험결과 고찰)

  • Lee, Dongjun;Choi, Youngtae;Lee, Kwangwon;Lim, Jaemoon
    • Journal of Auto-vehicle Safety Association
    • /
    • v.3 no.2
    • /
    • pp.22-27
    • /
    • 2011
  • The side impact test in the Korean New Car Assessment program (KNCAP) has been conducted since 2003. The side impact test method has been contributed to the improvement of the vehicle side structure and the enhancement of the occupant protection performance for the domestic vehicles. The pole side impact test method introduced in the KNCAP in 2010 to enhance the head protection under the severe side crash environment. The pole side impact test is optional for the additional score to be added to the overall rating score. The test results of side and pole side impact test for five vehicles were introduced and compared.

A Evaluation Study on Reduction Method of Floor Impact Noise through Field Test and the Effective Method for Heavy Impact Noise (현장실험을 통한 바닥충격음 저감공법의 성능평가 및 중량충격음 저감 방안)

  • Lee, Byung-Kwon;Bae, Sang-Hwan;Hong, Cheon-Hwa
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.451-456
    • /
    • 2004
  • In this study, evaluation was carried out for reduction method of floor impact noise through field test and the effective methods for heavy impact noise were proposed. As a field test, impact noise reduction materials such as EPP, EEPS, EVA, PE and so on, did not satisfied the recommandation value at the condition of 150mm thickness concrete slab. The evaluation results for those materials by 'inverse A curve' showed $53\sim55dB$ at heavy impact noise and $53\sim58dB$ at light impact noise. But, two methods proposed by authors were evaluated $47\sim50dB$ at heavy Impact noise and $54\sim58dB$ at light Impact noise on the similar concrete slab thickness.

  • PDF

A Study on Application of Finite Element Method to the Impact test for the Safety of the Splash Guard of a CNC Machine Tool (CNC 공작기계 스프레쉬 가드의 안전성을 위한 충격 시험에 대한 유한요소법 적용에 관한 연구)

  • Kim, Tae Won;Choi, Jin Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.5
    • /
    • pp.782-788
    • /
    • 2013
  • This study addresses the issue of safety of the splash guard of a computer numerical control (CNC) machine tool at the design stage. As an impact test for evaluating safety requirements such as strength under the safety regulation is an expensive and iterative task, it is necessary to develop a new method to minimize the task of the impact test for development of the machine tool. In this study, explicit finite element method was adopted for replacement of the impact test of the splash guard of a machine tool at the design stage. A finite element model was developed for implementing the impact test on an actual vertical CNC lathe and then produced the analysis including plastic strain and deformation to enable the safety of its splash guard to be determined. The analysis results demonstrated that the finite element method can be applied to safety evaluation for design of the splash guard of a CNC machine tool.

Estimation of Compressive Strength of Reinforced Concrete Structure Using Impact Testing Method and Rebound Hardness Method

  • Hong, Seonguk;Kim, Seunghun;Lee, Yongtaeg;Jeong, Jaewon;Lee, Changyong;Park, Chanwoo
    • Architectural research
    • /
    • v.20 no.4
    • /
    • pp.137-145
    • /
    • 2018
  • The nondestructive test is widely used in the field of diagnosis and maintenance to evaluate the degree of damaging of structures caused by aging, and the demand for this test method is expected to continue increasing. However, there is a lack of standards related to the nondestructive test, and South Korea is relying heavily on developed nations for original technologies related to diagnosis. It is an urgent task to establish a nondestructive test method appropriate for the circumstance of South Korea. The purpose of this study is to compare and analyze estimated error of compressive strength in single-story structures comprised of vertical and horizontal reinforced concrete members using the impact testing method and rebound hardness method, which are nondestructive test methods, and to review on-site applicability of these methods. Based on compressive strength of the structures estimated, overall mean error was 21.2% for the impact testing method and 15.6% for the rebound hardness method. The necessity of a reliable diagnostic method based on compound nondestructive test methods to increase accuracy of estimation was confirmed.

Fault Detection Method for Ceramic Cup by Pseudo Reverberation Time Based on Output Data by Impact Test (충격 시험의 출력 데이터에 기초한 유사잔향 시간을 이용한 도자기의 결함 탐지법)

  • Park Seok-Tae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.6
    • /
    • pp.257-268
    • /
    • 2006
  • To determine the faults of ceramic cup it is proposed to use pseudo reverberation time concept estimated by impact test in room. Schroeder curves estimated from impact test for a cup with small crack and without one are utilized to estimate pseudo reverberation time. Pseudo reverberation times are compared and discussed according to a sort of impact hammers and impact points and also boundary conditions. As a result. proposed method is proved to be very useful to detect the existence of faults for candidate cups.

Evaluation of the Safety impact by Adaptive Cruise Control System (자동순항제어기에 의한 안전도 향상 효과 분석)

  • Lee, Taeyoung;Yi, Kyongsu;Lee, Chankyu;Lee, Jaewan
    • Journal of Auto-vehicle Safety Association
    • /
    • v.4 no.1
    • /
    • pp.5-11
    • /
    • 2012
  • This paper discusses the evaluation of the safety impact of the Adaptive Cruise Control (ACC) system in Korea. To evaluate the safety impact, this paper suggests an analysis method by using the test scenario and field operational test data. The test scenario is composed to represent the main component factor of the ACC system and ACC related accident situation such as rear-end collision, lane-change, and road-curvature, etc. Also, from the field operation test data, the system's potential to increase the safety can be measured ideally. Besides, field operational testdata was used to revise the expected safety impact value as Korean road conditions. By using the proposed evaluation method, enhanced safety impact of the ACC system can be estimated scientifically.

Finite Element Modeling of Low Density Polyurethane Foam Material (저밀도 폴리우레탄 포옴재료의 유한요소 모델링)

  • 김원택;최형연
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.183-188
    • /
    • 1996
  • The compressive stress-strain response of Low Density Polyurethane foam material is modeled using the finite element method. A constitutive equation which include experimental constants based on quasi-static and dynamic uniaxial compression test is proposed. Impact test with different impactor masses and velocities are performed to verify the proposed model. The comparison between impact test and finite element analysis shows good agreements.

  • PDF

Investigation for Impact Stability of the Motorcycle Helmet by Using Finite Element Method (유한요소법을 이용한 오토바이 헬멧의 충돌 안정성 검토)

  • Yu, B.M.;Song, J.S.;Kim, D.;Lee, S.K.;Kim, Y.H.
    • Transactions of Materials Processing
    • /
    • v.16 no.5 s.95
    • /
    • pp.370-374
    • /
    • 2007
  • A motorcycle helmet is very essential to protect the head of driver and it is directly connected to driver's life. Prior to producing the helmet, it has to be passed the process of impact test to evaluate its safety. This test evaluates peak acceleration and head injury criteria (H.I.C.). This paper simulates the impact test with finite element method to find the behavior of helmet during the test. Also, the effect of impact sites on the helmet was evaluated to improve the thickness distribution of the helmet.