• Title/Summary/Keyword: impact stresses

Search Result 257, Processing Time 0.025 seconds

A Study on the strength improvement in weldment by the impact loading (충격하중에 의한 용접구조물의 강도 증가에 관한 연구)

  • 양영수
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.3
    • /
    • pp.76-82
    • /
    • 2000
  • It is well known that during the oxygen cutting process residual thermal stresses are produced in weldment. The local non-uniform heating and subsequent cooling which takes place during any welding process causes complex thermal strains and stresses to finally lead to residual stresses exceed to the yield stress. High tensile stresses combined with applied structural load in the region near the welded joint can given rise to distortion brittle fracture change of the fatigue strength and stress corrosion cracking. The appropriate treatment of the welded component which reduces the peak of he welding residual stresses is believed to lower risk of the fracture during the service of the structure. In this study the impact loading in oxygen cutting frame was applied to reduce the residual stress. After applying the impact loading redistribution of resid-ual stress was measured by cutting method and the effect of fatigue was tested.

  • PDF

Low velocity impact response and dynamic stresses of thick high order laminated composite truncated sandwich conical shell based on a new TDOF spring-mass-damper model considering structural damping

  • Azizi, A.;Khalili, S.M.R.;Fard, K. Malekzadeh
    • Steel and Composite Structures
    • /
    • v.26 no.6
    • /
    • pp.771-791
    • /
    • 2018
  • This paper deals with the low velocity impact response and dynamic stresses of composite sandwich truncated conical shells (STCS) with compressible or incompressible core. Impacts are assumed to occur normally over the top face-sheet and the interaction between the impactor and the structure is simulated using a new equivalent three-degree-of-freedom (TDOF) spring-mass-damper (SMD) model. The displacement fields of core and face sheets are considered by higher order and first order shear deformation theory (FSDT), respectively. Considering continuity boundary conditions between the layers, the motion equations are derived based on Hamilton's principal incorporating the curvature, in-plane stress of the core and the structural damping effects based on Kelvin-Voigt model. In order to obtain the contact force, the displacement histories and the dynamic stresses, the differential quadrature method (DQM) is used. The effects of different parameters such as number of the layers of the face sheets, boundary conditions, semi vertex angle of the cone, impact velocity of impactor, trapezoidal shape and in-plane stresses of the core are examined on the low velocity impact response of STCS. Comparison of the present results with those reported by other researchers, confirms the accuracy of the present method. Numerical results show that increasing the impact velocity of the impactor yields to increases in the maximum contact force and deflection, while the contact duration is decreased. In addition, the normal stresses induced in top layer are higher than bottom layer since the top layer is subjected to impact load. Furthermore, with considering structural damping, the contact force and dynamic deflection decrees.

취성재료의 충격파괴에 관한 연구 I

  • 양인영;정태권;정낙규;이상호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.2
    • /
    • pp.298-309
    • /
    • 1990
  • In this paper, a new method is suggested to analyze impulsive stresses at loading poing of concentrated impact load under certain impact conditions determined by impact velocity, stiffness of plate and mass of impact body, etc. The impulsive stresses are analyzed by using the three dimensional dynamic theory of elasticity so as to analytically clarify the generation phenomenon of cone crack at the impact fracture of fragile materials (to be discussed if the second paper). The Lagrange's plate theory and Hertz's law of contact theory are used for the analysis of impact load, and the approximate equation of impact load is suggested to analyze the impulsive stresses at the impact point to decide the ranage of impact load factor. When impact load factors are over and under 0.263, approximate equations are suggested to be F(t)=Aexp(-Bt)sinCt and F(t)=Aexp(-bt) {1-exp(Ct)} respectively. Also, the inverse Laplace transformation is done by using the F.F.T.(fast fourier transform) algorithm. And in order to clarity the validity of stress analysis method, experiments on strain fluctuation at impact point are performed on a supported square glass plate. Finally, these analytical results are shown to be in close agreement with experimental results.

The Impact Stresses and Wave Propagation of Laminated Composites

  • Ahn, Kook Chan;Kim, Doo Hwan;Lee, Gwang Seok
    • International Journal of Safety
    • /
    • v.1 no.1
    • /
    • pp.7-12
    • /
    • 2002
  • This paper demonstrates the impact stresses and wave propagation characteristics of glass/epoxy laminates subjected to the low-velocity impact by a steel ball theoretically and experimentally. A plate finite element model in conjunction with experimental contact laws is used for the theoretical investigation. The specimens for statical indentation and impact test are composed of $[0/45/0/-45/0]_28 and [90/45/90/-45/90]_28$ stacking sequences and have clamped-simply supported boundary conditions. Finally, these two results are compared and then the impulsive stress and wave propagation characteristics of this laminated composite are studied.

Stress Analysis at an Impact Loading Point of Finite Plates according to the dimensions of Impact Loading Parameter (충격하중계수의 크기에 따른 유한평판의 충격하중 작용점에서의 응력해석)

  • 김지훈;심재기;양인영
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.1
    • /
    • pp.46-52
    • /
    • 1996
  • In this paper, an analytical method is proposed to find the dimensions of impact stresses with using the dimensions of impact loading parameter regardless of mass of impactor, velocity of impactor, and plate thickness. In analytical method of Impulsive stresses, the three-dimensional dynamic theory of elasticity using rectangular coordinates and the potential theory of displacement are utilized, and when the measurement of Impact loading is difficult especially for a steel ball colliding on an infinite plate, the impact loading can be obtained by using the classical plate theory and Hertz’s contact theory. And in the numerical analysis, the fast Fourier transform (F. F. T.) algorithm and the numerical inverse Laplace transformation are used because the analysis of impact loading Is difficult to obtain solutions by using the thress-dimensional dynamic theory of elasticity.

  • PDF

Experimental Study on the Structural Safety of the Tractor Front-End Loader Against Impact Load

  • Park, Young-Jun;Shim, Sung-Bo;Nam, Ju-Seok
    • Journal of Biosystems Engineering
    • /
    • v.41 no.3
    • /
    • pp.153-160
    • /
    • 2016
  • Purpose: This study was conducted to experimentally investigate the structural safety of and identify critical locations in a front-end loader under impact loads. Methods: Impact and static tests were conducted on a commonly used front-end loader mounted on a tractor. In the impact test, the bucket of the front-end loader with maximum live load was raised to its maximum lift height and was allowed to free fall to a height of 500 mm above the ground where it was stopped abruptly. For the static test, the bucket with maximum live load was raised and held at the maximum lift height, median height, and a height of 500 mm from the ground. Strain gages were attached at twenty-three main locations on the front-end loader, and the maximum stresses and strains were measured during respective impact and static tests. Results: Stresses and strains at the same location on the loader were higher in the impact test than in the static test, for most of measurement locations. This indicated that the front-end loader was put under a severe environment during impact loading. The safety factors for stresses were higher than 1.0 at all locations during impact and static tests. Conclusions: Since the lowest safety factor was higher than 1.0, the front-end loader was considered as structurally safe under impact loads. However, caution must be exercised at the locations having relatively low safety factors because failure may occur at these locations under high impact loads. These important design locations were identified to be the bucket link elements and the connection elements between the tractor frame and front-end loader. A robust design is required for these elements because of their high failure probability caused by excessive impact stress.

An Impact Analysis of Adhesively-Bonded Single Lap Joint (단면 겹치기 접착 조인트의 충돌해석)

  • Lee, Ju-Won;Na, Won-Bae
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.172-177
    • /
    • 2010
  • This study presents an explicit dynamic analysis of an adhesively bonded single-lap joint under an impact load. The finite element software, ANSYS LS-DYNA, was used for the analysis and Von Mises stresses were obtained from the analysis. To model the adherents, solid elements were used and a rigid body was assumed for impactor modeling. Three impact heights (1 m, 5 m, and 10 m) were applied to consider different impact conditions and infinite boundary conditions were applied to the end-area of each adherent to save computational time in the analysis. In addition to investigating the stresses in the normal state, we also investigated the stresses in a damaged state (elasticity deterioration), simulated by a change in Young's modulus for 36 of the 3600 elements in the upper layer of the adhesive. The results showed that the location of damage is critical to the stress state of each layer (upper, middle, and lower).

Effect of Structural Elasticity on Slamming Against Wetdecks of Multihull Vessels

  • Kvalsvold, Jan;Faltinsen, Odd M.;Aarsnes, Jan V.
    • Journal of Ship and Ocean Technology
    • /
    • v.1 no.1
    • /
    • pp.1-14
    • /
    • 1997
  • Hydroelastic slamming against the wetdeck of a multihull vessel is studied numerically and experimentally. The beam equations and a two-dimensional flow model are used to find the dynamic stresses in longitudinal stiffeners between two transverse stiffeners. The largest stresses in the structure occur in the time scale of the lowest wet natural period of the beam. A simple relation between the maximum stress, the local geometry and the impact velocity of the wetdeck is established. The stresses in the wetdeck are neither sensitive to the radius of curvature of the waves nor where the waves initially hit the wetdeck. It is concluded that the maximum impact pressure should not be used to find maximum bending stresses during wetdeck slamming.

  • PDF

Investigation on Effects of Residual Stresses and Charpy V-Notch Impact Energy on Brittle Fractures of the Butt Weld between Close Check Valve and Piping, and of the Valve Body in Nuclear Power Plants (원전 역지 밸브/배관 맞대기 용접부와 밸브 몸체의 취성 파괴에 미치는 잔류응력 및 Charpy V-노치 충격에너지의 영향 고찰)

  • Kim, Jong-Sung;Kim, Hyun-Su
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.11 no.1
    • /
    • pp.69-73
    • /
    • 2015
  • The study investigated effects of residual stresses and Charpy impact energy on brittle fractures of the butt weld between the valve and the piping, and of the valve body in nuclear power plants via a linear elastic fracture mechanics approach in the ASME B&PV Code, Sec.XI and finite element analysis. Weld residual stress in a butt weld between close check valve and piping, and residual stress in the valve due to casting process were assumed to be proportional to yield strength of base metal. Operating stresses in the butt weld and the valve body were calculated using approximate engineering formulae and finite element analysis, respectively. Applied stress intensity factors were calculated by assuming postulated cracks with specific sizes and then by substituting the residual stresses and the operating stresses into engineering formulae presented in the ASME B&PV Code, Sec.III. Plane strain fracture toughness was derived by using a correlation between Charpy V-notch impact energy and fracture toughness. Structural integrity of the weld and the body against brittle fracture was assessed by using the applied stress intensity factors, plane strain fracture toughness and the linear elastic fracture mechanics approach. As a result, it was identified that the structural integrity was maintained with decreasing the residual stress levels and increasing the Charpy V-notch impact energy.

A 2D FE Model for a Unique Residual Stress in Single Shot Impact (단일 숏 충돌에서의 잔류응력 유일해를 위한 2차원 유한요소해석 모델)

  • Kim, Tae-Hyung;Lee, Hyung-Yil
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.183-188
    • /
    • 2007
  • In this paper, we propose a 2D-FE model in single impact with combined physical factors to obtain a unique residual stress by shot peening. Applied physical parameters include elastic-plastic deformation of shot ball, material damping coefficients, strain rate, dynamic friction coefficients. Single impact FE model consists of 2D axisymmetric elements. The FE model with combined factors showed converged and unique distributions of surface stress, maximum compressive residual stress and deformation depth. Further, in contrast to the FE models with rigid shot and elastic deformable shot, FE model with plastic deformable shot produces residual stresses very close to experimental solutions by X-ray diffraction. We therefore validated the 2D FE model with combined peeing factors and plastic deformable shot. This FE model will be a base of the 3D FE model for residual stresses by multi-impact shot peening.

  • PDF