• Title/Summary/Keyword: impact resistance

Search Result 1,058, Processing Time 0.029 seconds

The Effect of MBS on the Compatibility of Scrap PVB/PMMA Blends (Scrap PVB/PMMA 블렌드에 미치는 MBS의 상용화효과(相溶化效果))

  • Choi, Hyeong-Ki;Lee, Yong-Moo;Yoon, Ju-Ho;Choi, Sei-Young
    • Elastomers and Composites
    • /
    • v.31 no.1
    • /
    • pp.23-32
    • /
    • 1996
  • PVB was blended with PMMA in order to recycle scraped PVB material which recovered in the safety glass manufactories. The purpose of this research on PVB/PMMA blend was applied with excellent tackiness and transparency of PVB as a material of high strength to make the maximum use. Also, the blending of PVB with PMMA was aimed at the increase of impact strength of PMMA because the elastic property of PVB might decrease the brittleness of PMMA due to the lack of inner impact resistance. Izod impact resistance was propotional to increase the content of PVB, which was predominantly increased in the addition of 10phr above MBS. High rate impact resistance showed a tendency to Increase but it showed a tendency to decrease maximum load and energy if the contents of PVB increased. On the other hand total energy and ductile index showed a tendency to increase excellent impact resistance in the addition of MBS contents. As a result of observed surface of PVB/PMMA blends, the size of PVB domain increased distribution homogenuously, in the addited MBS contents increased it showed distribution homogeneously and partially a wetability.

  • PDF

Performance and modeling of high-performance steel fiber reinforced concrete under impact loads

  • Perumal, Ramadoss
    • Computers and Concrete
    • /
    • v.13 no.2
    • /
    • pp.255-270
    • /
    • 2014
  • Impact performance of high-performance concrete (HPC) and SFRC at 28-day and 56-day under the action of repeated dynamic loading was studied. Silica fume replacement at 10% and 15% by mass and crimped steel fiber ($V_f$ = 0.5%- 1.5%) with aspect ratios of 80 and 53 were used in the concrete mixes. Results indicated that addition of fibers in HPC can effectively restrain the initiation and propagation of cracks under stress, and enhance the impact strengths and toughness of HPC. Variation of fiber aspect ratio has minor effect on improvement in impact strength. Based on the experimental data, failure resistance prediction models were developed with correlation coefficient (R) = 0.96 and the estimated absolute variation is 1.82% and on validation, the integral absolute error (IAE) determined is 10.49%. On analyzing the data collected, linear relationship for the prediction of failure resistance with R= 0.99 was obtained. IAE value of 10.26% for the model indicates better the reliability of model. Multiple linear regression model was developed to predict the ultimate failure resistance with multiple R= 0.96 and absolute variation obtained is 4.9%.

The Effect of Contextual Factors on Resistance to Change in Lean Transformation

  • TRAN, Duc Trong;PHAM, Huong Thu;BUI, Van Thu
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.11
    • /
    • pp.479-489
    • /
    • 2020
  • The purpose of this paper is to uncover whether and how contextual factors (information exchange, participation, trust in management, and training), relate to resistance to change. It also explores the mediating effect of perceived impact of change on the relations between contextual factors and resistance to change. This study is conducted in several manufacturing plants in food processing industry in Vietnam, which is implementing a top-down large-scale change - Lean transformation, adopting Total Productive Maintenance (TPM) program, to be specific. The findings suggest that all four contextual factors are negatively associated with resistance to change, in which training had the strongest impact. Also, the perceived change impact partially mediates the relationships between the four contextual factors and resistance to change. The practical implications of this paper are that employees who receive adequate, timely and useful information relating to change are less likely to show opposing behaviors towards change. Fostering trust in management among employees, and employee involvement in decision-making, also have a significant influence when addressing employee resistance to change. Employees who are well-trained, well-equipped with tools and knowledge about the change, are less likely to resist as they view the benefits of changes more significant than the risks.

Basic Performance Evaluation of Flooring Board With High Wear Resistance (고내마모성 플로어링보드의 기초 성능 평가)

  • Park, Cheul-Woo;Sin, Sang-Ho;Lee, Dong-Gun;Jo, Young-Bin;Ju, Hee-Jung;Lim, Nam-Gi
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.205-206
    • /
    • 2021
  • A comparative analysis of wear resistance and shock resistance tests shows that wear resistance is up to 6 times and at least 2 times higher wear resistance than current products, even considering the limited number of turns due to too much rotation. In the case of shock resistance, there was no problem except 7.5T, but this is only a result of KS test method, so it is deemed that additional fall impact tests by various objects in daily life are needed for practical comparison.

  • PDF

Characterization of PETG Thermoplastic Composites Enhanced TiO2, Carbon Black, and POE (TiO2, Carbonblack 및 POE로 보강된 열가소성 PETG 복합재료의 특성)

  • Yu, Seong-Hun;Lee, Jong-hyuk;Sim, Jee-hyun
    • Textile Coloration and Finishing
    • /
    • v.31 no.4
    • /
    • pp.354-362
    • /
    • 2019
  • In order to apply thermoplastic composites using PETG resin to various industrial fields such as bicycle frames and industrial parts, it is necessary to verify the impact resistance, durability and mechanical properties of the manufactured composite materials. To improve the mechanical properties, durability and impact resistance of PETG resin, an amorphous resin, in this study, compound and injection molding process were carried out using various additives such as TiO2, carbon black, polyolefin elastomer, and PETG amorphous resin. The thermal and mechanical properties of the thermoplastic composites, and the Charpy impact strength. The analysis was performed to evaluate the characteristics according to the types of additives. DSC and DMA analyzes were performed for thermal properties, and tensile strength, flexural strength, and tensile strength change rate were measured using a universal testing machine to evaluate mechanical properties. Charpy impact strength test was conducted to analyze the impact characteristics, and the fracture section was analyzed after the impact strength test. In the case of POE material-added thermoplastic composites, thermal and mechanical properties tend to decrease, but workability and impact resistance tend to be superior to those of PETG materials.

Standardization of Impact Test Methods of Non-bearing Lightweight Wall for Building (건축용 비내력 경량벽체의 내충격성 시험방법의 표준화)

  • Kim, Ki-Jun;Choi, Soo-Kyung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.181-182
    • /
    • 2015
  • The use of non-bearing light weight wall has increased recently due to the increase of high-rise buildings and supply of long-life housing. Light weight wall has advantages such as reducing the self-weight of the building, convenience in installation, and shortening construction period, however, must have a sufficient strength to external force. This study standardized the impact resistance test method for light weight walls by using the actual impact load obtained through load analysis test in previous studies. The impact resistance test method was divided into the test method that uses soft body and the one that uses hard body. The size of specimen was set up as height 2.4m and width 3.0m. The size and shape of the body followed those used in BS 5234-2 and so on for the compatibility with the test method used overseas. The judgment criteria for impact resistance based on test results were not defined uniformly as the assessment of functional damage can vary depending on the type of material, structural method, purpose of wall, and so on even when the same impact load was applied.

  • PDF

Ship Collision Risk Assessment for Bridges (교량의 선박충돌위험도 평가)

  • Lee, Seong Lo;Bae, Yong Gwi
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.1-9
    • /
    • 2006
  • An analysis of the annual frequency of collapse(AF) is performed for each bridge pier exposed to ship collision. From this analysis, the impact lateral resistance can be determined for each pier. The bridge pier impact resistance is selected using a probability-based analysis procedure in which the predicted annual frequency of bridge collapse, AF, from the ship collision risk assessment is compared to an acceptance criterion. The analysis procedure is an iterative process in which a trial impact resistance is selected for a bridge component and a computed AF is compared to the acceptance criterion, and revisions to the analysis variables are made as necessary to achieve compliance. The distribution of the AF acceptance criterion among the exposed piers is generally based on the designer's judgment. In this study, the acceptance criterion is allocated to each pier using allocation weights based on the previous predictions. To determine the design impact lateral resistance of bridge components such pylon and pier, the numerical analysis is performed iteratively with the analysis variable of impact resistance ratio of pylon to pier. The design impact lateral resistance can vary greatly among the components of the same bridge, depending upon the waterway geometry, available water depth, bridge geometry, and vessel traffic characteristics. More researches on the allocation model of AF and the determination of impact resistance are required.

AN EXPERIMENTAL STUDY ON REINFORCEMENT OF ACRYLIC RESIN DENTURE BASE (아크릴릭 레진 의치상 강화에 관한 실험적 연구)

  • Kim Hyung-Sik;Kim Chang-Whe;Kim Young-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.32 no.3
    • /
    • pp.411-430
    • /
    • 1994
  • The denture may be fractured accidentally by an impact while outside the mouth, or may be cracked or broken while in service in the mouth. The latter is generally a fatigue failure caused by repeated flexure over a period of time. This investigation compared the flexural fatigue resistance, the impact force and the transverse strength of two denture base materials with and without the grid strengthener, the T300, the T800 and the Kevlar fiber to evaluate the fracture resistance. The distribution and behavior of fibers across fracture lines were examined by Hi-Scope Compact Microvision System. Through analyses of the data from this study, the following conclusions were obtained. 1. The flexural fatigue resistance, impact strength and transverse strength of high impact strength resin were higher than those of conventional heat polymerizing resin, but statistically there was no significant difference(p>0.05). 2. All specimens with and without the grid strengthener did not show significant differences in the flexural fatigue, the impact and the transverse strength test(p>0.05). 3. All specimens reinforced with the T300, the T800 and the Kevlar fiber showed significant increase of the fatigue resistance and the impact force(p<0.05). 4. All specimens reinforced with the T800 and the Kevlar fiber showed significant increase of the transverse strength(p<0.05). 5. All specimens reinforced with the T300, the T800 and the Kevlar fiber exhibited greenstick fractures. The fibers tended to remain enveloped in the resin, resisting pull-out.

  • PDF

Thermal Performance and Impact Resistance Evaluations of Composite Insulation Mat Reinforced Polyurethane Foam (복합 단열 매트 보강 폴리우레탄 폼의 열적 성능 및 내충격성 평가)

  • Hwang, Byeong-Kwan;Bae, Jin-Ho;Lee, Jae-Myung
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.290-295
    • /
    • 2019
  • In the present study, composite insulation mat was reinforced over polyurethane foam (PUF) to improve the thermal performance and impact resistance of the PUF applied to the liquefied natural gas carrier insulation system. The composite insulation mat used Kevlar, aerogel, and cryogel composite mat that can be applied in a cryogenic environment. The thermal conductivity was measured at $20^{\circ}C$ to investigate the thermal performance, and the drop impact test was carried out under impact energy of 30 J at $20^{\circ}C$, $-163^{\circ}C$ to investigate the impact resistance. The measured thermal performance was compared with neat PUF through effective thermal conductivity theoretical value. The shock resistance was evaluated of contact force, contact time, and absorb energy. In experimental results, cryogel composite mat was the best performance in terms of thermal performance, and aerogel composite mat was the best performance in terms of impact resistance.

Impact Resistance Characteristics of Cementitious Composites Subjected to High-velocity Projectiles with Reinforcement Types (고속 발사체와 충돌한 시멘트복합체의 보강재 종류에 따른 내충격 특성 연구)

  • Seok, Won-Kyun;Kim, Young-Sun;Lee, Yae-Chan;Nam, Jeong-Soo;Kim, Gyu-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.3
    • /
    • pp.261-272
    • /
    • 2023
  • This research concentrates on the potential explosion hazards that could arise from unforeseen accidents in the rapidly proliferating hydrogen refueling stations and Energy Storage System(ESS) facilities. It underscores the pivotal role of structural protection technology in alleviating such risks. The research contributes primary data for the formulation of structure protection design by assessing the impact resistance across various reinforcement techniques used in cement composites. The experimental results elucidate that reinforced concrete, serving as the quintessential structural material, exhibits a 20% advancement in impact resistance in comparison to its non-reinforced counterpart. In situations typified by rapid loads, such as those seen with high-velocity impacts, the reinforcement of the matrix with fibers is demonstrably more beneficial than local reinforcement. These insights accentuate the importance of judiciously choosing the reinforcement method to augment impact resistance in structural design.