DOI QR코드

DOI QR Code

Characterization of PETG Thermoplastic Composites Enhanced TiO2, Carbon Black, and POE

TiO2, Carbonblack 및 POE로 보강된 열가소성 PETG 복합재료의 특성

  • Yu, Seong-Hun (Korea Dyeing and Finishing Technology Institute(DYETEC)) ;
  • Lee, Jong-hyuk (Korea Dyeing and Finishing Technology Institute(DYETEC)) ;
  • Sim, Jee-hyun (Korea Dyeing and Finishing Technology Institute(DYETEC))
  • 유성훈 (다이텍연구원 구조해석팀) ;
  • 이종혁 (다이텍연구원 구조해석팀) ;
  • 심지현 (다이텍연구원 구조해석팀)
  • Received : 2019.10.01
  • Accepted : 2019.11.22
  • Published : 2019.12.27

Abstract

In order to apply thermoplastic composites using PETG resin to various industrial fields such as bicycle frames and industrial parts, it is necessary to verify the impact resistance, durability and mechanical properties of the manufactured composite materials. To improve the mechanical properties, durability and impact resistance of PETG resin, an amorphous resin, in this study, compound and injection molding process were carried out using various additives such as TiO2, carbon black, polyolefin elastomer, and PETG amorphous resin. The thermal and mechanical properties of the thermoplastic composites, and the Charpy impact strength. The analysis was performed to evaluate the characteristics according to the types of additives. DSC and DMA analyzes were performed for thermal properties, and tensile strength, flexural strength, and tensile strength change rate were measured using a universal testing machine to evaluate mechanical properties. Charpy impact strength test was conducted to analyze the impact characteristics, and the fracture section was analyzed after the impact strength test. In the case of POE material-added thermoplastic composites, thermal and mechanical properties tend to decrease, but workability and impact resistance tend to be superior to those of PETG materials.

Keywords

References

  1. D. Wang, B. Yang, Q. T. Chen, J. Chen, and Y. Shi, A Facile Evaluation on Melt Crystallization Kinetics and Thermal Properties of Low-density Polyethylene(LDPE)/Recycled Polyethylene Terephthalate(RPET) Blends, Advanced Industrial and Engineering Polymer Research, 2, 126(2019). https://doi.org/10.1016/j.aiepr.2019.05.002
  2. B. Yang, J. Chen, L. F. Su, J. B. Miao, and Y. Shi, Melt Crystallization and Thermal Properties of Graphene Platelets(GNPs) Modified Recycled Polyethylene Terephthalate(RPET) Composites: The Filler Network Analysis, Polymer Testing, 77, 112(2019).
  3. R. M. Meri, J. Zicans, R. Maksimovs, T. Ivanova, and G. Japins, Elasticity and Long-term Behavior of Recycled Polyethylene Terephthalate(rPET)/montmorillonite (MMT) Composites, Composite Structures, 111, 453(2014). https://doi.org/10.1016/j.compstruct.2014.01.017
  4. W. Li, Y. Zhai, P. Yi, and Y. Zhang, Fabrication of Micro-pyramid Arrays on PETG Films by Roll-to-roll Hot Embossing, Microelectronic Engineering, 164, 100(2016). https://doi.org/10.1016/j.mee.2016.08.001
  5. P. Franciszczak, E. Piesowicz, and K. Kalnins, Manufacturing and Properties of r-PETG/PET Fibre Composite-Novel Approach for Recycling of PETG Plastic Scrap into Engineering Compound for Injection Moulding, Composites Part B: Engineering, 154, 430(2018). https://doi.org/10.1016/j.compositesb.2018.09.023
  6. T. Chen and J. Zhang, Non-isothermal Cold Crystallization Kinetics of Poly(ethylene glycol-co-1,4-cyclohexanedimethanol terephthalate)(PETG) Copolyesters with Different Compositions, Polymer Testing, 48, 23(2015). https://doi.org/10.1016/j.polymertesting.2015.09.008
  7. S. R. Montoro, M. Y. Shiino, T. G. Cruz, M. O. H. Cioffi, and H. J. C. Woowald, Alkali Resistance of Poly(ethylene terephthalate)(PET) and Poly(ethylene glycol-co-1,4-cyclohexanedimethanol terephthalate) (PETG) Copolyesters: The Role of Composition, Polymer Degradation and Stability, 120, 232(2015). https://doi.org/10.1016/j.polymdegradstab.2015.07.008
  8. Z. W. Zhu, Q. R. Zheng, Z. H. Wang, Z. Tang, and W. Chen, Hydrogen Adsorption on Graphene Sheets and Nonporous Graphitized Thermalcarbonblack at Low Surface Coverage, International Journal of Hydrogen Energy, 42, 18465(2017). https://doi.org/10.1016/j.ijhydene.2017.04.173
  9. N. Klomkliang, R. Kaewmanee, S. Saimoey, and S. Intarayothya, Adsorption of Water and Methanol on Highly Graphitized Thermalcarbonblack: The Effects of Functional Group and Temperature on the Isosteric Heat at Low Loadings, Carbon, 99, 361(2016). https://doi.org/10.1016/j.carbon.2015.12.036
  10. J. H. Arndt, R. Brull, T. Macko, P. Garg, and J. C. J. F. Tacx, Characterization of the Chemical Composition Distribution of Polyolefin Plastomers/elastomers(ethylene/1-octene copolymers) and Comparison to Theoretical Predictions, Polymer, 156, 214(2018). https://doi.org/10.1016/j.polymer.2018.09.059
  11. X. Zhang, B. Maira, Y. Hashimoto, T. Wada, and T. Taniike, Selective Localization of Aluminum Oxide at Interface and its Effect on Thermal Conductivity in Polypropylene/polyolefin Elastomer Blends, Composites Part B: Engineering, 162, 662(2019). https://doi.org/10.1016/j.compositesb.2019.01.043
  12. K. Tanaka and T. Katayama, Injection Molding of Flat Glass Fiber Reinforced Thermoplastics, Modern Physics B, 24(15), 2555(2010). https://doi.org/10.1142/S0217979210065258
  13. I. Pierro, G. Leone, G. Zanchin, M. Canetti, and F. Bertini, Polyolefin Thermoplastic Elastomers from 1-octene Copolymerization with 1-decene and Cyclopentene, European Polymer Journal, 93, 200(2017). https://doi.org/10.1016/j.eurpolymj.2017.05.044
  14. H. A. Khonakdar, S. H. Jafari, and M. N. Hesabi, Miscibility Analysis, Viscoelastic Properties and Morphology of Cyclic Olefin Copolymer/polyolefinelastomer (COC/POE) Blends, Composites Part B: Engineering, 69, 111(2015). https://doi.org/10.1016/j.compositesb.2014.09.034
  15. P. L. Ramkumar, D. M. Kulkarni, and V. V. R. Abhijit, Aditya Cherukumudi, Investigation ofMelt Flow Index and Impact Strength of Foamed LLDPE for Rotational Moulding Process, Procedia Materials Science, 6, 361(2014). https://doi.org/10.1016/j.mspro.2014.07.046
  16. Y. I. Kwon, E. Lim, and Y. S. Song, Simulation of Injection-compression Molding for Thin and Large Battery Housing, Current Applied Physics, 18, 1451(2018). https://doi.org/10.1016/j.cap.2018.08.017