DOI QR코드

DOI QR Code

Preparation and Study of Bioactive Characteristics of Alginate Sponge Containing Quercetin-encapsulated Nanocapsules

쿼세틴 담지 나노캡슐을 함유한 알지네이트 스펀지의 제조 및 생리활성 특성

  • Kim, Woo Jin (Korea Dyeing and Finishing Technology Institute) ;
  • Xu, Shuwen (Department of Textile System Engineering, Kyungpook National University) ;
  • Noh, Hyun Soo (Korea Advanced Nano Fab Center) ;
  • Lee, Hyun Ju (Korea Dyeing and Finishing Technology Institute) ;
  • Jeon, Jae Woo (Korea Dyeing and Finishing Technology Institute) ;
  • Ghim, Han Do (Department of Textile System Engineering, Kyungpook National University)
  • Received : 2019.11.20
  • Accepted : 2019.12.13
  • Published : 2019.12.27

Abstract

Quercetin is one of flavonoids widely distributed in the plants and well known to have antioxidants, antiinflammatory, antimicrobial properties. In this study, alginate sponge containing quercetin-encapsulated nanocapsules was prepared by miniemulsion polymerization, dyring/crosslinking method and their bioactive characteristics were investigated. Alginate sponge containing quercetin-encapsulated nanocapsules were evaluated using a field emission scanning electron microscope(FE-SEM), a high performance liquid chromatography, cell viability, DPPH radical scavenging activity and antibacterial activity. The study indicates that alginate sponge containing quercetin-encapsulated nanocapsules had significant antioxidant, antiinflammatory and antibacterial activities. This study suggested that alginate sponge containing quercetin-encapsulated nanocapsules can be a potential candidate for medical materials.

Keywords

References

  1. V. Rodriguez, H. Scott, A. Hoffman, P. Stayton, X. Li, and S. Pun, Encapsulation and Stabilization of Indocyanine Green within Poly(Styrene-Alt-Maleic Anhydride) Block-Poly(Styrene) Micelles for Near-Infrared Imaging, J. of Biomedical Optics, 13(1), 10(2008).
  2. S. J. Park, Y. J. Yang, and H. B. Lee, Effect of Acid-Base Interaction Between Silica and Fragrant Oil in the PCL/PEG Microcapsules, Colloids Surf. B: Biointerfaces, 38(1/2), 35(2004). https://doi.org/10.1016/j.colsurfb.2004.08.008
  3. S. J. Park and S. J. Seok, Release Behaviors of Poly(${\varepsilon}$-caprolactone)/Poly(ethyleneimine) Microcapsules, Korean Chem. Eng. Res., 43(4), 482(2005).
  4. L. Qi, Z. Xu, X. Jiang, C. Hu, and X. Zou, Preparation and Antibacterial Activity of Chitosan Nano Particles, Carbohydr. Res., 339(16), 2693(2004). https://doi.org/10.1016/j.carres.2004.09.007
  5. S. J. Park and K. S. Kim, Release Behaviors of Poly(${\varepsilon}$-caprolactone) Microcapsule Containing Tocopherol, J. Korean Ind. Eng. Chem., 14(8), 1104(2003).
  6. D. B. Dubal, S. W. Rau, P. J. Shughrue, H. Zhu, J. Yu, A. B. Cashion, S. Suzuki, L. M. Gerhold, M. B. Bottner, S. B. Dubal, I. Merchanthaler, M. S. Kindy, and P. M. Wise, Differential Modulation of Estrogen Receptors (ERs) in IschermicBrain Injury, Endocrinology, 147(6), 3076(2006). https://doi.org/10.1210/en.2005-1177
  7. H. Wang, Y. Yuan, M. Rong, and M. Zhang, Microencapsulation of Styrene with Melamine-Formaldehyde Resin, Colloid Polym. Sci., 287(9), 1089(2009). https://doi.org/10.1007/s00396-009-2072-6
  8. A. Kumari, S. C. Yadav, S. K. Yadav, Y. B. Pakade, and B. Singh, Development of Biodegradable Nanoparticles for Delivery of Quercetin, Colloids Surf. B: Biointerfaces, 80(2), 184(2010). https://doi.org/10.1016/j.colsurfb.2010.06.002
  9. J. P. Spencer, Flavonoids: Modulators of Brain Function?, British J. Nutr., 99(E-S1), 60(2008). https://doi.org/10.1017/S0007114508965776
  10. M. Schuier, H. Sies, B. Illek, and H. Fischer, Cocoa-related Flavonoids Inhibit CFTR-mediated Chloride Transport Across T84 Human Colon Epithelia, J. Nutr., 135(10), 2320(2005). https://doi.org/10.1093/jn/135.10.2320
  11. G. Berglier, L. Gastaldi, E. Ugazio, I. Miletto, P. Iliad, and S. Sapino, Stabilization of Quercetin Flavonoid in MCM-41 Mesoporous Silica: Positive Effect of Surface Functionalization, J. Colloid Interface Sci., 393(1), 109(2013). https://doi.org/10.1016/j.jcis.2012.10.073
  12. H. Chen, C. Khemtong, X. Yang, X. Chang, and J. Gao, Nanonization Strategies for Poorly Water-soluble Drugs, Drug Discovery Today, 16(7), 354(2011). https://doi.org/10.1016/j.drudis.2010.02.009
  13. D. H. Lee, G. S. Sim, J. H. Kim, G. S. Lee, H. B. Pyo, and B. C. Lee, Preparation and Characterization of Quercetin-loaded Polymethyl Methacrylate Microcapsules using a Polyol-in-oil-in-polyol Emulsion Solvent Evaporation Method, J. Pharm. Pharmacol., 59(12), 1611(2007). https://doi.org/10.1211/jpp.59.12.0002
  14. A. D. Roberts and H. Zhang, Poorly Water-solubled Drug Nanoparticles via Solvent Evaporation in Watersoluble Porous Polymers, Int. J. Pharm., 447(1-2), 241 (2013). https://doi.org/10.1016/j.ijpharm.2013.03.001
  15. M. S. Hong, Y. M. Yoon, S. K. An, I. S. An, and B. H. Byun, Protective Effects of the Natural Ingredient Quercetin in Human Dermal Fibroblasts, Kor. J. Aesthet. Cosmetol., 10(3), 571(2012).
  16. G. N. Lim, S. Y. Kim, M. J. Kim, and S. N. Park, Physical Characteristic and In vitro Transdermal Delivery of PCL-b-PEG Micelles Containing Quercetin and Rutin, Polymer(Korea), 36(4), 420(2012).