• Title/Summary/Keyword: impact pressure control

Search Result 150, Processing Time 0.028 seconds

Heavy-weight Impact Noise Reduction of Concrete Slab Reinforcement Using F.R.P (F.R.P 재료 보강에 의한 신개념 중량충격음 저감대책)

  • Jeong, Jeong-Ho;Yoo, Seung-Yup;Lee, Pyoung-Jik;Jeon, Jin-Yong;Jo, A-Hyoung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.383-386
    • /
    • 2005
  • Low frequency heavy-weight impact noise is the most irritating noise in Korean high-rise reinforced concrete apartment buildings. This low frequency noise is generated by foot traffic due to the fact that Koreans do not wear shoes at home. The transmission of the noise is facilitated by a load bearing wall structural system without beams and columns which is used in these buildings. In order to control low frequency heavy-weight impact noise, floating floors using isolation materials such as glass-wool mat and poly-urethane mat are used. However, it was difficult to control low frequency heavy-weight impact sound using isolation material. In this study, reinforcement of concrete slab using beams and plate was conducted. Using the FEM analysis, the effect of concrete slab reinforcement using FRP(fiber-glass reinforced plastic) on the bang machine impact vibration acceleration level and sound were conducted at the standard floor impact sound test building. The $3{\sim}4dB$ floor impact vibration acceleration level and impact sound pressure level were reduced and the natural frequency of slabs were changed.

  • PDF

Sensitivity Analysis of Initial Pressure and Upper Control Limit on the Pressure Decay Test for Membrane Integrity Evaluation (압력손실시험을 이용한 막 완결성 평가에서 초기압력 및 UCL 도출인자 민감도 분석)

  • Lee, Joohee;Hong, Seungkwan;Hur, Hyunchul;Lee, Kwangjae;Choi, Youngjune
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.6
    • /
    • pp.793-800
    • /
    • 2008
  • Recently domestic drinking water industry has recognized membrane-based technology as a promising alternative for water treatment. To ensure successful application of membrane processes, the integrity of membrane systems should be maintained. According to US EPA guidance, the pressure decay test based on the bubble point theory is recommended to detect any membrane defection of which size is close to the smallest diameter of Cryptosporidium oocysts, $3{\mu}m$. Proper implementation of the pressure decay test is greatly affected by initial test pressure, and the interpretation of the test results is associated with upper control limit. This study is conducted to investigate various factors affecting determination of initial test prtessure and upper control limit, including membrane-based parameters such as pore shape correction factor, surface tension and contact angle, and system-based parameters, such as volumetric concentration factor and total volume of system. In this paper, three different hollow fibers were used to perform the pressure decay test. With identical initial test pressure applied, their pressure decay tendency were different from each other. This finding can be explained by the micro-structure disparity of those membranes which is verified by FESEM images of those membranes. More specifically, FESEM images revealed that three hollow fibers have asymmetry, deep finger, shallow finger pore shape, respectively. In addition, sensitivity analysis was conducted on five parameters mentioned above to elucidate their relation to determination of initial test pressure and upper control limit. In case of initial pressure calculation, the pore shape correction factor has the highest value of sensitivity. For upper control limit determination, system factors have greater impact compared to membrane-based parameters.

Sealing design optimization of nuclear pressure relief valves based on the polynomial chaos expansion surrogate model

  • Chaoyong Zong;Maolin Shi;Qingye Li;Tianhang Xue;Xueguan Song;Xiaofeng Li;Dianjing Chen
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1382-1399
    • /
    • 2023
  • Pressure relief valve (PRV) is one of the important control valves used in nuclear power plants, and its sealing performance is crucial to ensure the safety and function of the entire pressure system. For the sealing performance improving purpose, an explicit function that accounts for all design parameters and can accurately describe the relationship between the multi-design parameters and the seal performance is essential, which is also the challenge of the valve seal design and/or optimization work. On this basis, a surrogate model-based design optimization is carried out in this paper. To obtain the basic data required by the surrogate model, both the Finite Element Model (FEM) and the Computational Fluid Dynamics (CFD) based numerical models were successively established, and thereby both the contact stresses of valve static sealing and dynamic impact (between valve disk and nozzle) could be predicted. With these basic data, the polynomial chaos expansion (PCE) surrogate model which can not only be used for inputs-outputs relationship construction, but also produce the sensitivity of different design parameters were developed. Based on the PCE surrogate model, a new design scheme was obtained after optimization, in which the valve sealing stress is increased by 24.42% while keeping the maximum impact stress lower than 90% of the material allowable stress. The result confirms the ability and feasibility of the method proposed in this paper, and should also be suitable for performance design optimizations of control valves with similar structures.

An Experimental Study on the Cushion Characteristics of Hydraulic Cylinder (유압 실린더의 쿠션특성에 관한 실험적 연구)

  • Lee, Sang-Gi;Kim, Dong-Su;Kim, Hyeong-Ui
    • 기계와재료
    • /
    • v.11 no.2 s.40
    • /
    • pp.53-61
    • /
    • 1999
  • The paper describes a characteristics analysis for cushion pressure and cushion stroke time at hydraulic cushioning cylinder. In hydraulic cushioning cylinder, an inertia exaggerates a kinetic energy at a reciprocation that collide with an end of stroke and generate a destructive shock, noise and vibration within the structural and operating member of machine of equipment. In order to reduce which cause to undesirable noise, vibration and fatigue in hydraulic control system, it is indispensible measure a cushion parameters at cushion region of hydraulic cushioning cylinder. A cushioning device is applied to absorb high impact energy and to decelerate a fast travelling object, too. At an experimental results, it turns out that cushion pressure is mainly a function of the external load and cylinder input flowrate rather than the supply pressure.

  • PDF

Particle Laden Flows Around Orifice Plates for Pressure Control in Pulverized Coal Pipe Lines (분체 이송관내 압력 조절을 위한 오리피스 주위에서의 입자 유동 및 마모 해석)

  • Cho, Hyung-Hee;Lee, Jae-Keun;Park, Ho-Dong;Seo, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.11
    • /
    • pp.1499-1508
    • /
    • 1998
  • A numerical study is performed to investigate pressure drops, particle trajectories and erosion around orifice plates in pulverized coal pipe lines. Particle impaction rates change significantly with orifice shapes and Stokes numbers. At Reynolds number of $5{\times}10^5$, the pulverized coal flows well with streamlines and do not collide at the orifice plates at small sizes (${\sim}20{\mu}m$). However, the large particles (over $70{\mu}m$) impact on the front face of the orifice and erode the orifice surface. The pressure loss coefficients around the erode orifice are largely different from the designed original orifice.

A STUDY ON EXPERIMENTAL CHARACTERISTICS OF ENERGY ABSORPT10N CONTROL IN THIN-WALLED TUBES FOR THE USE OF VEHICULAR- STRUCTURE MEMBERS

  • Kim, S.-K.;Im, K.-H.;Hwang, C.-S.;Yang, I.-Y.
    • International Journal of Automotive Technology
    • /
    • v.3 no.4
    • /
    • pp.137-145
    • /
    • 2002
  • Automobiles should be designed to meet the requirements and standards for the protections of passengers in a car accident. One of safety factors is an absorbing capacity in collision. Many vehicles have been designed based on the criterion of the absorbing capacity. Therefore a controller has been developed in order to control and increase the absorbing capacity of impact energy in automobile collision. The capacity of impact energy will be improved regardless of vehicular-structure members and shapes. An air-pressure horizontal impact tester for crushing has been built up for the evaluation of energy absorbing characteristics in collision. Influence of height, thickness and clearance in the controller have been considered to predict and control the energy absorbing capacity. Aluminum alloy (Al) tubes (30,39,44 m in inner dia. and 0.8, 1.0, 1.2 m in thickness) are tested by axial loading. The energy absorbing capacity of Al tubes have been estimated in cases of with-controller and without-controller. respectively based on height. thickness, clearance of an controller.

Minimization of Shifting Shock of Tractor PST using SimulationX (SimulationX를 이용한 트랙터 PST 변속 충격 최소화 연구)

  • Eom, Tae Ho;Lee, Chul-Hee
    • Journal of Drive and Control
    • /
    • v.15 no.3
    • /
    • pp.36-42
    • /
    • 2018
  • Agricultural tractors require frequent shifting to improve operation efficiency, and PST (Powershift Transmission) is considered as a suitable transmission. However, due to the inherent characteristics of the PST, shocks arise during shifting, which imparts a negative effect on the operator. Therefore, in order to improve the transmission performance of the tractor PST, researches on various methods including the hydraulic system circuit, the engine input speed control, and the mechanical system of the transmission are steadily being conducted. In this study, in order to reduce the impact of PST on a shift based on SimulationX software, we analyzed the characteristics of the input signal of PCV (Pressure Control Valve) through sensitivity analysis and verified the simulation model through actual vehicle test. Optimization was performed for minimizing the shift shock for some of the parameters of the input signal at constant temperature and RPM conditions.

Impact of the Anterior-Posterior Slope Types of the Scapulae on the Pressure Distribution of the Plantar Surface of the Foot

  • Lee, Juncheol;Kim, Myungchul;Moon, Sora
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.5 no.4
    • /
    • pp.1-9
    • /
    • 2017
  • Purpose : This study was conducted among 195 adults in their 20s. To analyze the impact of the slope types of the scapulae on the plantar surface of the foot, the average pressure (AP), the maximum pressure (MP), the average of local distribution values, and the average movement of the center of pressure (COP) of the different slope types of the scapulae were compared. Method : The anterior-posterior slopes of the scapulae were measured by comparing the slopes of the left and right sides of the scapulae based on the differences in the height and the slope of the coracoid process and the angulus inferior scapulae. Those whose left side of the scapulae had an anterior slope were categorized as type 1, and those whose right side of the scapulae had an anterior slope, as type 2. The average plantar pressure, the center of plantar pressure, the maximum plantar pressure, and local distribution values were analyzed using a plantar pressure analyzer of the FSA. Result : In terms of the AP of the left and right feet, there was no statistically significant difference both in types 1 and 2 on the left and right feet. The comparison results of the MP and the average of local distribution values of the two slope types of the scapulae showed that there was no statistically significant difference on the X-axis both in types 1 and 2 on the left and right feet, but that there was a large statistically significant difference on the Y-axis both in types 1 and 2. That is, the MP of the right foot of the left anterior slope type was located more on the hindfoot than that of the right anterior slope type, and the MP of the left foot of the left anterior slope type was located more on the hindfoot than that of right anterior slope type. Conclusion : This study can be used as fundamental data to predict differences in the location and size of the COP and changes in plantar pressure distribution depending on the slope types of the scapulae, and control the distribution for therapeutic purposes.

Experimental Study of Cushioning Pneumatic Cylinder with Meter In/Meter Out Control System (메타인 및 메타아웃 제어에 의한 공기압 실린더의 쿠션특성에 관한 실험적 연구)

  • 김동수;이상천
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.2
    • /
    • pp.97-104
    • /
    • 2000
  • Pneumatic cylinder is widely used for mechanical handling systems. Often, the impact occurs at the both ends points of pneumatic cylinder and generates destructive shock with in the structural operating members of the machine or equipment. To reduce the damage of system, therefore, shock absorbing devices are required. Cushioning of pneumatic cylinders at one or both ends of piston stroke is used to reduce the shock and vibration. The cylinder body have to withstand under high velocity and load. In this research, the pneumatic cushioning cylinder moving tests have been conducted for different load mass and supply pressure. The velocity of pneumatic cylinder actuation system with multiple orifice cushion sleeve which is set vertically controled with meter-in/out system. This study examines the dynamic characteristics of pneumatic cylinder with cushion devices. It turns out that the cushion pressure is mainly a function of the external load rather than the supply pressure. The cushion region characteristics was also revealed in the meter-in system.

  • PDF

Experimental Study on Cushioning Characteristics of Pneumatic Cylinder with Meter-In/Meter-Out Control

  • Kim, Dong-Soo;Lee, Sang-Chun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.1
    • /
    • pp.57-65
    • /
    • 2002
  • Pneumatic cylinder is widely used fur mechanical handling systems. Often, the impact occurs at the both ends points of pneumatic cylinder and generates the destructive shock with in the structural operating members of the machine or equipment. To reduce the damage of system, therefore, shock absorbing devices are required. Cushioning of pneumatic cylinders at one or both ends of piston stroke is used to reduce the shock and vibration. The cylinder body have to withstand under conditions of high velocity and load. In this research pneumatic cushioning cylinder moving tests have been conducted for different load mass and supply pressure. The velocity of pneumatic cylinder actuation system which is set vertically with multiple orifice cushion sleeve is controled with the meter-in/out control system. This study examines the dynamic characteristics of pneumatic cylinder which are used as cushion devices. It turns out that the cushion pressure is mainly a function of the external load rather than the supply pressure. The cushion region characteristics was also revealed in the meter-in control system.