• Title/Summary/Keyword: impact modulation

Search Result 82, Processing Time 0.023 seconds

Biomimetic Hopping Strategy for Robots

  • Sung, S.H.;Youm, Y.;Chung, W.K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2654-2659
    • /
    • 2003
  • In this paper, we present biomimetic hopping strategy which is more human-like for legged robot through stiffness modulation. Stiffness value is calculated from the motion of body center of gravity. This method enable to reduce impact force on touch-down, adaption on ground stiffness change and height modulation. Simple selected models will be used to validate this method. For general model, singular perturbation is used for control and simulation using stiffness modulation is presented.

  • PDF

Study on Fast-Changing Mixed-Modulation Recognition Based on Neural Network Algorithms

  • Jing, Qingfeng;Wang, Huaxia;Yang, Liming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.12
    • /
    • pp.4664-4681
    • /
    • 2020
  • Modulation recognition (MR) plays a key role in cognitive radar, cognitive radio, and some other civilian and military fields. While existing methods can identify the signal modulation type by extracting the signal characteristics, the quality of feature extraction has a serious impact on the recognition results. In this paper, an end-to-end MR method based on long short-term memory (LSTM) and the gated recurrent unit (GRU) is put forward, which can directly predict the modulation type from a sampled signal. Additionally, the sliding window method is applied to fast-changing mixed-modulation signals for which the signal modulation type changes over time. The recognition accuracy on training datasets in different SNR ranges and the proportion of each modulation method in misclassified samples are analyzed, and it is found to be reasonable to select the evenly-distributed and full range of SNR data as the training data. With the improvement of the SNR, the recognition accuracy increases rapidly. When the length of the training dataset increases, the neural network recognition effect is better. The loss function value of the neural network decreases with the increase of the training dataset length, and then tends to be stable. Moreover, when the fast-changing period is less than 20ms, the error rate is as high as 50%. As the fast-changing period is increased to 30ms, the error rates of the GRU and LSTM neural networks are less than 5%.

Constant Envelope Enhanced FQPSK and Its Performance Analysis

  • Xie, Zhidong;Zhang, Gengxin;Bian, Dongming
    • Journal of Communications and Networks
    • /
    • v.13 no.5
    • /
    • pp.442-448
    • /
    • 2011
  • It's a challenging task to design a high performance modulation for satellite and space communications due to the limited power and bandwidth resource. Constant envelope modulation is an attractive scheme to be used in such cases for their needlessness of input power back-off about 2~3 dB for avoidance of nonlinear distortion induced by high power amplifier. The envelope of Feher quadrature phase shift keying (FQPSK) has a least fluctuation of 0.18 dB (quasi constant envelope) and can be further improved. This paper improves FQPSK by defining a set of new waveform functions, which changes FQPSK to be a strictly constant envelope modulation. The performance of the FQPSK adopting new waveform is justified by analysis and simulation. The study results show that the novel FQPSK is immune to the impact of HPA and outperforms conventional FQPSK on bit error rate (BER) performance. The BER performance of this novel modulation is better than that of FQPSK by more than 0.5 dB at least and 2 dB at most.

Evaluation of Microcracks in Thermal Damaged Concrete Using Nonlinear Ultrasonic Modulation Technique (비선형 초음파 변조 기법을 이용한 열손상 콘크리트의 미세균열 평가)

  • Park, Sun-Jong;Yim, Hong Jae;Kwak, Hyo-Gyung
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.651-658
    • /
    • 2012
  • This paper concentrates on the evaluation of microcracks in thermal damaged concrete on the basis of the nonlinear ultrasonic modulation technique. Since concrete structure exposed to high temperature accompanies the development of microcracks due to the physical and chemical changes from temperature and exposed time, the adoption of nonlinear approach is required. Instead of using the conventional ultrasonic nondestructive methods which have the limitation in evaluating excessive microcracks, accordingly, a nonlinear ultrasonic modulation method which shows better sensitivity in quantifying microcracks is introduced. Upon the analysis for the modulation of ultrasonic wave and low frequency impact to measure the nonlinearity parameter, which can be used as an indicator of thermal damage, the verification processes for the introduced technique are followed: SEM investigation and permeable pore space test are performed to characterize thermally induced microcracks in concrete, and ultrasonic pulse velocity tests are performed to confirm the outstanding sensitivity of nonlinear ultrasonic modulation technique. In advance, compressive strength of thermal damaged concrete is measured to represent the effect of microcracks on performance degradation. Correlation studies between experimental data and measured data show that nonlinear ultrasonic modulation technique can effectively be used to quantify thermally induced microcracks, and to estimate the compressive strength of thermally damaged concrete.

Convex Optimization Approach to Multi-Level Modulation for Dimmable Visible Light Communications under LED Efficiency Droop

  • Lee, Sang Hyun;Park, Il-Kyu;Kwon, Jae Kyun
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.29-35
    • /
    • 2016
  • This paper deals with a design method and capacity loss of an efficient multi-level modulation scheme for dimmable visible light communications (VLC) systems that use light-emitting diodes (LEDs) with efficiency droop. To this end, the impact of such an impairment on dimmable VLC is addressed with respect to multi-level modulations based on pulse-amplitude modulation (PAM) via data-rate optimization formulation.

Transition-limited pulse-amplitude modulation technique for high-speed wireline communication systems

  • Eunji Song;Seonghyun Park;Jaeduk Han
    • ETRI Journal
    • /
    • v.45 no.6
    • /
    • pp.974-981
    • /
    • 2023
  • This paper presents a transition-limited pulse-amplitude modulation (TLPAM) signaling method to enable a high data rate and robust wireline communications. TLPAM signaling addresses the impact of high intersymbol interference (ISI) ratios in conventional M-ary PAM signaling methods by limiting the maximum voltage transition level between adjacent symbols. The implementation of a TLPAM signaling encoder is realized by setting back the most significant bits (MSBs) in the queue. The correlation between TLPAM's maximum transition level, effective data rate, and eye width/height is analyzed with various channel loss parameters, followed by characterization and measurement results with a realistic channel setup. The analysis and experimental results reveal the effectiveness of the proposed TLPAM signaling scheme for achieving a high data rate with minimal interference.

Experimental Study on Conducted EMI Mitigation in SMPS using a Novel Spread Spectrum Technique

  • Premalatha, L.;Raghavendiran, T.A.;Ravichandran, C.
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.619-625
    • /
    • 2013
  • Switched mode power supplies (SMPS) are power electronic circuits extensively used in a wide range of applications. High frequency switching operation of SMPS causes electromagnetic emissions and has the potential to interfere with system operation, which in turn has an impact on system performance. This makes electromagnetic compatibility (EMC) an important concern. In this paper, a new and simple spread spectrum technique is proposed by modulating chaotic pulse position modulation (CPPM) and pulse width modulation (PWM). The resulting CPWM is implemented to reduce the conducted EMI in SMPS. The proposed method is found to be effective in reducing conduction EMI. The effectiveness and simplicity of the proposed method on spreading those dominating frequencies is compared to the EMI mitigation technique using an external chaotic generator. Finally, the levels of conductive EMI with standard PWM, CPWM with an external chaos generator and the proposed method are experimentally verified to comply with the CISPR 22A regulations. The results confirm the effectiveness of the proposed method.

Performance Analysis for Selection Decode-and-Forward Relay Networks with Differential Modulation over Rayleigh Fading Channels (레일리 페이딩 채널에서 차등 변조기법을 이용한 선택적 복호 후 재전송 중계 네트워크의 성능 분석)

  • Kong, Hyung-Yun;Bao, Vo Nguyen Quoc
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1A
    • /
    • pp.1-9
    • /
    • 2010
  • This paper offers performance analysis of selection decode and forward (DF) networks with differential modulation/demodulation for an arbitrary number of relays in independent but not identically distributed Rayleigh fading channels. We have shown that the selection DF protocol with differential modulation can achieve full diversity in both independent identically distributed (i.i.d.) and independent but not identically distributed (i.n.d.) Rayleigh fading channels, and the performance loss due to using non-coherent detection is not substantial. Furthermore, we study the impact of combining techniques on the performance of the system by comparing a system that uses selection combining (SC) to one that uses maximum ratio combining (MRC). Simulations are performed and show that they match exactly with analytic ones in high SNR regime.

A Study of Optimal Impact Angle Control Laws (최적 충돌각 제어법칙에 관한 연구)

  • 송택렬;신상진
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.211-218
    • /
    • 1998
  • As a part of trajectory modulation to increase system survivability and terminal effectiveness, impact angle control is required in the terminal phase of tactical missile systems. The missile systems are not allowed to have high altitude to reduce probability of detection by sensors of missile defense systems. In this paper, an analytic form of a time-optimal control law is suggested in the case of constrained missile maneuverability and impact angle under the assumption of a zero-lag autopilot. The control law is obtained by establishing optimal missile-target engagement geometry in the vertical plane. Extension of the law for missiles with autopilot response lags requiring a numerical solution is studied by introducing an iterative algorithm for optimal switching time determination of which the initial switching instants are obtained from the analytic solution. Also suggested is a closed-form impact angle control law derived by an energy-optimal approach. The performances of the proposed guidance laws are evaluated by a series of computer runs.

  • PDF

Estimation of Subjective Evaluations for Impact Sound and Analysis of the Effects for Parts of a Car (자동차 임팩트 소음에 대한 주관적 평가 및 차량 개발에 응용)

  • Park, Sang-Won;Lee, Sang-Kwon;Bae, Byung-Kuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.37-44
    • /
    • 2010
  • Impact noise is induced in a car when it is driven on a harsh road or over some bumps. This noise occurs with the very high level of sound, which affects passengers in some way or other. Although it is impossible to clearly remove such noise, it is necessary to research an improvement in sound quality for impact noise. A new sound metric for impact sound is presented. This metric is verified by comparison between mean subjective ratings and several sound metrics. In this paper, more objective attributes are considered, which the attributes are expressing the level and modulation of sound. Three sound metrics are employed to get impact sound indexes for each course by the method of multiple linear regressions. The indexes are verified by considering the correlation between the estimated values from the multiple linear regressions and the mean subjective ratings by evaluators. Also, the subjective ratings on the indexes are estimated for the case in which some parts of suspension system are changed. The estimated ratings represent more reasonable or acceptable ratings. Thus, such indexes can be used for modification of the parts of suspension system under considering a good sound quality.