• Title/Summary/Keyword: impact loads

Search Result 723, Processing Time 0.033 seconds

Buckling and vibrational information of an annular nanosystem covered with piezoelectric layer

  • Gao, Jie;Nie, Rong;Feng, Yongyi;Luo, Jiawei;Li, Siyu
    • Advances in nano research
    • /
    • v.13 no.3
    • /
    • pp.233-245
    • /
    • 2022
  • Resently, the use of smart structures has been heightened up rapidly. For this issue, vibration analysis related to a graphene nanoplatelet composite (GPLRC) nanodisk which is attached to a piezoelectric layer and is subjected to thermal loads is explored in the current paper. The formulation of this study is obtained through the energy method and nonlocal strain gradient theory, and then it is solved employing generalized differential quadrature method (GDQM). Halpin-Tsai model in addition to the mixture's rule are utilized to capture the material properties related to the reinforced composite layer. The compatibility conditions are presented for exhibiting the perfect bounding between two layers. The results of this study are validated by employing the other published articles. The impact of such parameters as external voltage, the radius ratio, temperature difference, and nonlocality on the vibrational frequency of the system is investigated in detail.

Computational electromechanical approach for stability/instability of smart system actuated with piezoelectric NEMS

  • Luo, Zhonghua;Cheng, Xiaoling;Yang, Yuhan
    • Advances in Computational Design
    • /
    • v.7 no.3
    • /
    • pp.211-227
    • /
    • 2022
  • In this research, the size-dependent impact of an embedded piezoelectric nanoplate subjected to in-plane loading on free vibration characteristic is studied. The foundation is two-parameter viscoelastic. The nonlocal elasticity is employed in order to capture the influence of size of the plate. By utilizing Hamilton's principle as well as the first- order shear deformation theory, the governing equation and boundary conditions are achieved. Then, using Navier method the equations associated with the free vibration of a plate constructed piezoelectric material under in-plane loads are solved analytically. The presented formulation and solution procedure are validated using other papers. Also, the impacts of nonlocal parameter, mode number, constant of spring, electric potential, and geometry of the nanoplate on the vibrational frequency are examined. As this paper is the first research in which the vibration associated with piezoelectric nanoplate on the basis of FSDT and nonlocal elasticity is investigated analytically, this results can be used in future investigation in this area.

Application of the exact spectral element method in the analysis of the smart functionally graded plate

  • Farhad Abad;Jafar Rouzegar;Saeid Lotfian
    • Steel and Composite Structures
    • /
    • v.47 no.2
    • /
    • pp.297-313
    • /
    • 2023
  • This study aims to extend the application of the spectral element method (SEM) to wave propagation and free vibration analysis of functionally graded (FG) plates integrated with thin piezoelectric layers, plates with tapered thickness and structure on elastic foundations. Also, the dynamic response of the smart FG plate under impact and moving loads is presented. In this paper, the dynamic stiffness matrix of the smart rectangular FG plate is determined by using the exact dynamic shape functions based on Mindlin plate assumptions. The low computational time and results' independence with the number of elements are two significant features of the SEM. Also, to prove the accuracy and efficiency of the SEM, results are compared with Abaqus simulations and those reported in references. Furthermore, the effects of boundary conditions, power-law index, piezoelectric layers thickness, and type of loading on the results are studied.

Test of the Conduction Cooling System for HTS SMES (고온 초전도 SMES용 전도냉각시스템 특성시험)

  • Yeom, Han-Kil
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.1
    • /
    • pp.62-66
    • /
    • 2008
  • The characteristic of the superconducting magnetic energy storage(SMES) system is faster response, longer life time, more economical, and environment friendly than other uninterruptible power supply(UPS) using battery. So, the SMES system can be used to develop methods for improving power quality where a short interruption of power could lead to a long and costly shutdown. Recently, cryogen free SMES has developed using BSCCO(Bismuth Strontium Calcium Copper Oxide) wire. We fabricated and tested the conduction cooling system for the 600 kJ class HTS SMES. The experiment was accomplished for the simulation coils. The simulation coils were made of aluminium, it is equivalent to thermal mass of 600 kJ HTS SMES coil. The coil is cooled with two GM coolers through the copper conduction bar. In this paper, we report that the test results of cool-down and heat loads characteristics of the simulation coils. The developed conduction cooling system adapted to 600 kJ HTS SMES system and cope with the unexpected sudden heat impact, too.

Wave Analysis Method for Offshore Wind Power Design Suitable for Suitable for Ulsan Area

  • Woobeom Han;Kanghee Lee;Seungjae Lee
    • New & Renewable Energy
    • /
    • v.20 no.2
    • /
    • pp.2-16
    • /
    • 2024
  • Various loads induced by marine environmental conditions, such as waves, currents, and wind, are crucial for the operation and viability of offshore wind power (OWP) systems. In particular, waves have a significant impact on the stress and fatigue load of offshore structures, and highly reliable design parameters should be derived through extreme value analysis (EVA) techniques. In this study, extreme wave analyses were conducted with various Weibull distribution models to determine the reliable design parameters of an OWP system suitable for the Ulsan area. Forty-three years of long-term hindcast data generated by a numerical wave model were adopted as the analyses data, and the least-squares method was used to estimate the parameters of the distribution function for EVA. The inverse first-order reliability method was employed as the EVA technique. The obtained results were compared among themselves under the assumption that the marginal probability distributions were 2p, 3p, and exponentiated Weibull distributions.

Near-ground wind and its characterization for engineering applications

  • Crandell, Jay H.;Farkas, William;Lyons, James M.;Freeborne, William
    • Wind and Structures
    • /
    • v.3 no.3
    • /
    • pp.143-158
    • /
    • 2000
  • This report presents the findings of a one-year monitoring effort to empirically characterize and evaluate the nature of near-ground winds for structural engineering purposes. The current wind engineering practice in the United States does not explicitly consider certain important near-ground wind characteristics in typical rough terrain conditions and the possible effect on efficient design of low-rise structures, such as homes and other light-frame buildings that comprise most of the building population. Therefore, near ground wind data was collected for the purpose of comparing actual near-ground wind characteristics to the current U.S. wind engineering practice. The study provides data depicting variability of wind speeds, wind velocity profiles for a major thunderstorm event and a northeaster, and the influence of thunderstorms on annual extreme wind speeds at various heights above ground in a typical rough environment. Data showing the decrease in the power law exponent with increasing wind speed is also presented. It is demonstrated that near-ground wind speeds (i.e., less than 10 m above ground) are likely to be over-estimated in the current design practice by as much as 20 percent which may result in wind load over-estimate of about 50% for low-rise buildings in typical rough terrain. The importance of thunderstorm wind profiles on determination of design wind speeds and building loads (particularly for buildings substantially taller than 10 m) is also discussed. Recommendations are given for possible improvements to the current design practice in the United States with respect to low-rise buildings in rough terrain and for the need to study the impact of thunderstorm gust profile shapes on extreme value wind speed estimates and building loads.

The Development of Integrated Power Quality Diagnosis System for Power System (전력계통 전력품질 통합진단시스템 개발)

  • Kwak, N.H.;Jeon, Y.S.;Park, S.H.;Lee, I.M.;Park, H.C.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.277-279
    • /
    • 2005
  • Recently, due to the increase of power conversion devices and nonlinear loads with the development of information, communication and control technologies, the instantaneous minute interruption factors such as voltage & current harmonics, surge occurring frequency, instantaneous voltage variation, voltage unbalance, flicker etc. have greatly threatened the power quality, and the deterioration of electric power facilities and the functional error of controllers are increasing. As such an instantaneous minute interruption appears to be small and local, accurate evaluation with measurement is difficult and total analysis system is required through a wide range of power quality effect analysis such as the simultaneous measurement on various power supply phenomena and the analysis on the interrelation with system loads. Most of conventional power quality diagnosis equipments have beer developed and applied, which were able to measure the stability rate of frequency, the stability rate of voltage, the electricity-failure duration etc, However, they were insufficient to analyze the system present situation, understand the cause of the failure occurred by the problem of power quality and analyze out the phenomena. Accordingly, this study will address the development of the system for a wide range of power quality diagnosis over the present level, the system for supporting the determination such as the analysis on risk factors, failure mode and impact, the system for harmonic evaluation based on international standards(IEC 61000 Series) and the total power quality diagnosis network & system with the extension and openness as a local and national-scale broadband power quality diagnosis system.

  • PDF

Dynamic performance of girder bridges with explosion-proof and aseismic system

  • Wang, Jingyu;Yuan, Wancheng;Wu, Xun;Wei, Kai
    • Structural Engineering and Mechanics
    • /
    • v.61 no.3
    • /
    • pp.419-426
    • /
    • 2017
  • Recently, the transportation of dangerous explosive goods is increasing, which makes vehicle blasting accidents a potential threat for the safety of bridge structures. In addition, blasting accidents happen more easily when earthquake occurs. Excessive dynamic response of bridges under extreme loads may cause local member damage, serviceability issues, or even failure of the whole structure. In this paper, a new explosion-proof and aseismic system is proposed including cable support damping bearing and steel-fiber reinforced concrete based on the existing researches. Then, considering one 40m-span simply supported concrete T-bridge as the prototype, through scale model test and numerical simulation, the dynamic response of the bridge under three conditions including only earthquake, only blast load and the combination of the two extreme loads is obtained and the applicability of this explosion-proof and aseismic system is explored. Results of the study show that this explosion-proof and aseismic system has good adaptability to seism and blast load at different level. The reducing vibration isolation efficiency of cable support damping bearing is pretty high. Increasing cables does not affect the good shock-absorption performance of the original bearing. The new system is good at shock absorption and displacement limitation. It works well in reducing the vertical dynamic response of beam body, and could limit the relative displacement between main girder and capping beam in different orientation so as to solve the problem of beam falling. The study also shows that the enhancement of steel fibers in concrete could significantly improve the blast resistance of main beam. Results of this paper can be used in the process of antiknock design, and provide strong theoretical basis for comprehensive protection and support of girder bridges.

Reliability Assessment of Lead-contained and Lead-free BGA Solder Joints under Cyclic Bending Loads (굽힘 하중하에서 유연 및 무연 솔더 조인트의 신뢰성 평가)

  • Kim Il-Ho;Lee Soon-Bok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.1 s.38
    • /
    • pp.63-72
    • /
    • 2006
  • Mobile products, such as cellular phones, PDA and notebook, are subjected to many different mechanical loads, which include bending, twisting, impact shock and vibration. In this study, a cyclic bending test of the BGA package was performed to evaluate the fatigue life. Special bending tester, which was suitable for electronic package, was developed using an electromagnetic actuator. A nonlinear finite element model was used to simulate the mechanical bending deformation of solder joint in BGA packages. The fatigue life of lead-free (95.5Sn4.0Ag0.5Cu) solder joints was compared with that of lead-contained (63Sn37Pb). When the applied load to the specimen is small, the lead-free solder has longer fatigue life than lead-contained solder. The fatigue crack is initialized at the exterior solder joints and is propagated into the inner solder joints.

  • PDF

The Water Quality and Purification Load Assessment of Drain Water of Facility Horticulture Areas (시설원예 배출 배액의 수질환경 평가 및 정화 부하량 산정)

  • Son, Jinkwan;Choi, Dekkyu;Kong, Minjae;Yun, Sungwook;Park, Minjung;Kang, Donghyeon
    • Journal of Environmental Science International
    • /
    • v.28 no.12
    • /
    • pp.1199-1208
    • /
    • 2019
  • Korea's protected horticulture is rapidly increasing in scale due to various advantages such as year-round harvesting, labor savings through automation and shortened culture period, and greater income generation. This study was conducted to investigate the impact of protected horticulture on water quality. The results of this study are expected to provide basic data contributing to improvements towards sustainable agriculture and eco-friendly design of protected horticulture complex. The average T-N and T-P loads from vinyl greenhouses were 286.55± 143.98 mg/L and 59.14±13.77 mg/L, respectively and those from glass greenhouses 380.68 ± 150.41 mg/L and 61.85±20.72 mg/L. The annual discharge of wastewater derived from the monthly discharge from the horticulture greenhouses were estimated at 2597 ton/ha, with the annual phosphorus load amounting to 155.3 kg/ha. The average T-N and T-P loads in the tested greenhouse effluents were in excess of 8.3- and 13.5-fold the standards for the Korean wastewater plant effluent. The waste nutrient solution discharged from a protected horticulture complex can cause water contamination. Therefore, there is a need to conduct follow-up research using a water purification system or a trench method to develop a eco-friendly protected horticulture complex for sustainable agriculture.