• Title/Summary/Keyword: impact forces

Search Result 490, Processing Time 0.026 seconds

Analysis and Evaluation of Impact Sound Insulation of Concrete Floor Structures in Response to Characteristics of Heavy-weight Impact Sources (중량충격원에 따른 콘크리트 바닥판의 차음특성 분석 및 평가에 관한 연구)

  • Yoo, Seung-Yup;Yeon, Jun-Oh;Jeon, Jin-Yong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.10
    • /
    • pp.1062-1068
    • /
    • 2009
  • In this study, the impact force levels of bang machine and impact ball were measured, then the heavy-weight impact sounds generated by the bang machine and impact ball were investigated. It was found that the heavy-weight impact sources generated through modal excitation, and the impact force of the impact ball was similar to that of real impact source. The heavy-weight impact sounds were also measured in the real apartments with different slab thickness and floor structures. The results showed that the floor impact sound levels in terms of $L_{iFmax,AW}$, generated by impact ball sounds were reduced by using the resilient isolators. The frequency characteristics of heavy-weight impact sounds at 125 and 250 Hz were consistent with the characteristics of impact force spectrum. However, the difference between the impact sounds and the impact forces were found at 63 and 500 Hz due to the resonance of the floor structure and flanking noise, respectively.

Analysis of Impact Responses Considering Sensor Dynamics (센서 동역학을 고려한 충격응답해석)

  • Ryu, B.J.;Kwon, B.H.;Ahn, K.Y.;Oh, I.S.;Lee, G.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.731-736
    • /
    • 2002
  • Impact is the most common type of dynamic loading conditions that give rise to impulsive forces and affects the vibrational characteristics of mechanical systems . Since the real impact force and acceleration at the contact surface are measured indirectly through the sensors, the measured outputs can be a little different from the real impact responses. In this study, the contact force model based on the Hertz law is proposed in order to predict the impact force correctly. To investigate the influence of the position of the sensor attached to the impacting bodies, the two kinds of sensors were used. Finally, the contact force model obtained by drop test was applied to predict the impact force between the moving part and the stopper in magnetic contactor.

  • PDF

Biomechanical Effect of In-line Skating Wrist Guards on the Prevention of Wrist Fracture

  • Lim, Tae-Hong;Linda M. McGrady;Peter Hoepfner;Craig C. Young;William G. Raasch;Han, Jung-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.7
    • /
    • pp.1072-1076
    • /
    • 2001
  • A biomechanical study was conducted in this study to investigate if in-line skating wrist guards can effectively reduce the impact forces so as to protect the wrist from fracture. The forearm specimens with and without wrist guards were dropped using a specially designed sled to simulate the impact on the wrist while falling. A force plate was used to measure the total impact force on the dropping weight whereas a load cell was attached to the proximal end of the specimen and used to quantify the impact transmitted through the wrist joint. From the non-destructive tests, mean peak force measured from a force plate showed no difference between the guarded and unguarded groups whereas mean impulse of the guarded group was significantly greater than that of the unguarded group (p<0.01). Comparing the peak force and impulse measured from the load cell, the peak force of the guarded group was significantly less than that of the unguarded group (p<0.001), while the impulse values were similar. When the specimens were dropped from a higher position (2.5ft ve. 1ft), all unguarded specimens had severe wrist fractures whereas fracture was found in three out of 5 guarded specimens. Comparison of mean peak forces and impulses showed as significant difference between the guarded and unguarded groups only in the mean impulse measured from the force plate. These results suggest that the wrist guard may protect the wrist by attenuating the peak force transmitted to radius and ulnar although it may not be effective when the wrist is subjected to an impact sufficiently large to cause fractures.

  • PDF

Identifying Dynamic Characteristics of the Traction Motor Housing For the Noise reduction of the Electric vehicle (전기자동차 소음저감을 위한 구동모터 하우징의 동특성 평가)

  • Park, Jongchan;Park, Seungyong;Cho, Hyun-Kyu;Park, Yunsu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.818-823
    • /
    • 2012
  • Assessment of the dynamics properties, like damping, dynamic stiffness and resonance sharpness is essential for the development of a robust system, specifically for the reduction of a traction motor noise. A practical method for identifying dynamic characteristics of a traction motor hosing for an electric vehicle is proposed. Assembling using interference fit of the components of the motor is attributed to the main cause of strong nonlinearity. It is well known that nonlinearity of a structure makes it difficult to assess damping properties or dynamic characteristics of the system. This research presents a practical damping or dynamic stiffness identifying procedures for a nonlinear system according to the boundary condition between assembled components. Based on the simple idea that impact forces of modal tests are highly affected on the condition of the hammer tip, Auto Power Spectrum of the impact forces are used to assess the assembling condition and dynamic characteristics of the system, especially, damping of the system.

  • PDF

Investigation of divergence tunnel excavation according to horizontal offsets between tunnels

  • Hong, Soon-Kyo;Oh, Dong-Wook;Kong, Suk-Min;Lee, Yong-Joo
    • Geomechanics and Engineering
    • /
    • v.21 no.2
    • /
    • pp.111-122
    • /
    • 2020
  • In most cases in urban areas, construction of divergence tunnel should take into account proximity to existing tunnel in operation. This inevitably leads to deformation of adjacent structures and surrounding ground. Preceding researches mainly dealt with reinforcing of the diverging section for the stability including the pillar. This has limitations in investigating the interactive effects between existing structures and surrounding ground due to the excavation of the divergence tunnel. In this study, the complex interactive behavior of pile, the operating tunnel, and the surrounding ground according to horizontal offsets between the two adjacent tunnels was quantitatively analyzed based on conditions diverged from operating tunnel in urban areas. The effects on ground structures confirmed by analyzing the ground surface settlements, pile settlements, and the axial forces of the pile. The axial forces of lining in operating tunnel investigated to estimate their impact on existing tunnel. In addition, in order to identify the deformation of the surrounding ground, the close range photogrammetry applied to the laboratory model test for confirming the underground displacements. Two-dimensional finite element numerical analysis was also performed and compared with the results. It identified that the impact of excavating a divergence tunnel decreased as the horizontal offset increased. In particular, when the horizontal offset was larger than 1.0D (D is the diameter of operating tunnel), the impact on existing structures further reduced and the deformation of surrounding ground was concentrated at the top of the divergence tunnel.

Weight Transfer Patterns Under the Different Golf Swing Types: a Case Study Involving a Low Handicap Player and a High Handicap Player (I) (골프스윙 방법에 따른 체중이동 패턴에 관한 연구:숙련자와 비숙련자의 케이스 스터디(I))

  • Park, Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.3
    • /
    • pp.31-49
    • /
    • 2005
  • The purpose of this study was to analyze the weight transfer patterns under the different golf swing types which are full swing control swing and putting stroke. Two women golfers participated in this study, one(165cm, 94.3kg)being classified as a low-handicap(LH)player, the other(165cm, 54.5kg) being classified as a high-handicap(HH) player. Both players are right-handed. Two force plates(Kistler, 9286AA) were synchronized with a motion capture system(Qualisys ProReflex MCU240). Anteriorposterior, mediolateral, and vertical forces were used as an indicator of the pattern of swing. Four discrete positions which are address, top of backswing impact, and finish were identified as an event and three phases which are backswing downswing, and follow-through between he events were also identified. The results showed that, at impact, the total force was 1.24BW ring the full swing 1.17BW during the control stroke, 1.00BW during the putting stroke. Depending on the golf swing types, the differences are existed. At impact, the distribution of forces is different with a low-handicap(LH) player and a high-handicap(HH) player. A LH player has 26% in right foot and 74% in left foot during the full swing 49% in right foot and 51% in left foot during the control swing 49% in right foot and 51% in left foot during the putting stroke. A HH, on the other hand, has 74% in right foot and 26% in left foot during the full swing 62% in right foot and 38% in left foot during the control swing 54% in right foot and 46% in left foot during the putting stroke. From address to top of backswing the amount of vertical forces are changed 43:57(right foot: left foot) to 76:24 during the full swing 47:53(right foot: left foot) to 75:25 during the control swing 50:50(right foot: left foot) to 54:46 during the putting stroke. The biggest weight transfer pattern took place in full swing and the control swing is next, and the putting stroke is the final.

Comparison of Performance of the Exciter and Impact Hammer Test for Dynamic Characteristics Analysis of Floor Slabs (건물바닥 슬래브의 동특성 분석을 위한 가진기와 Impact Hammer의 성능 비교)

  • Ahn, Sang-Kyung;Moon, Yeong-Jong;Oh, Jung-Keun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.117-120
    • /
    • 2007
  • The floor slabs of building structures are often subjected to the periodic force which is induced by vibrating machines or human activity(walking, jumping, running etc). These periodic forces cause excessive oscillation. In order to examine the dynamic characteristics of floor slabs, the dynamic characteristics test is accomplished. Generally, the Impact Hammer and Dynamic Exciter test is used to dynamic characteristics test. But the Impact Hammer test is not suitable to apply in building slabs. In this paper, It compared the performance of the Exciter and Impact Hammer test for dynamic characteristics analysis of floor slabs.

  • PDF

Nonlinear Analysis of Beam Vibration with Impact (충격성분을 갖는 보의 진동에 대한 비선형 해석)

  • Lee, B.H.;Choi, Y.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.455-460
    • /
    • 2000
  • Impact occurs when the vibration amplitude of a mechanical component exceeds a given clearance size. Examples of these mechanical systems include impact dampers, gears, link mechanism, rotor rub, and so on. The vibration due to impact has strong non-linear characteristics, which cannot be predicted by usual linear analysis. The designs of mechanical systems with impacts should be done on the basis of overall dynamic characteristics of the systems. In this paper, the nonlinear behaviors of a beam with a periodically moving support and a rigid stop are investigated numerically and experimentally. The beam vibration with impact is modeled by the equations of motion containing piecewise linear restoring forces and by the coefficient of restitution, respectively. Experimental and numerical results show jump phenomena and higher-harmonic vibrations. The effects between the increase of stiffness during impact and the coefficient of restitution are investigated through the comparison of the experimental and numerical results.

  • PDF

Comparative Study of Finite Element Analysis for Stresses Occurring in Various Models of the Spent Nuclear Fuel Disposal Canister due to the Accidental Drop and Impact on to the Ground (추락낙하 사고 시 지면과의 충돌충격에 의하여 다양한 고준위폐기물 처분용기모델에 발생하는 응력에 대한 유한요소해석 비교연구)

  • Kwon, Young-Joo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.5
    • /
    • pp.415-425
    • /
    • 2017
  • Stresses occur in the spent nuclear fuel disposal canister due to the impulsive forces incurred in the accidental drop and impact event from the transportation vehicle onto the ground during deposition in the repository. In this paper, the comparative study of finite element analysis for stresses occurring in various models of the spent nuclear fuel disposal canister due to these impulsive forces is presented as one of design processes for the structural integrity of the canister. The main content of the study is about the design of the structurally safe canister through this comparative study. The impulsive forces applied to the canister subjected to the accidental drop and impact event from the transportation vehicle onto the ground in the repository are obtained using the commercial rigid body dynamic analysis computer code, RecurDyn. Stresses and deformations occurring due to these impulsive forces are obtained using the commercial finite element analysis computer code, NISA. The study for the structurally safe canister is carried out thru comparing and reviewing these values. The study results show that stresses become larger as the wall encompassing the spent nuclear fuel bundles inside the canister becomes thicker or as the diameter of the canister becomes larger. However, the impulsive force applied to the canister also becomes larger as the canister diameter becomes larger. Nonetheless, the deformation value per unit impulsive force decreases as the canister diameter increases. Therefore, conclusively the canister is structurally safe as the diameter increases.