• Title/Summary/Keyword: impact failure

Search Result 936, Processing Time 0.023 seconds

Analysis of Likelihood of Failure for the Brittle Fracture through Quantitative Risk Based Inspection using API-581 (API-581에 의한 정량적 위험기반검사에서 취성파괴에 의한 사고발생 가능성 해석)

  • Kim Tae-Ok;Lee Hern-Chang;Jang Seo-Il
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.1 s.30
    • /
    • pp.1-6
    • /
    • 2006
  • To use pressurized facilities safely and effectively, a likelihood of failure (LOF) for the brittle fracture was analyzed quantitatively through the risk based inspection using API-581 BRD. We found that for the case of the low temperature/low toughness and the temper embrittlement, the technical module subfactor (TMSF) showed high value for the A impact curve, low temperature, and the no post weld heat treatment. But the risk didn't significantly change at the $855^{\circ}F$ embrittlement, and the LOF far the sigma phase embrittlement showed high value at low temperature of the high sigma.

  • PDF

An Empirical Analysis of the Valley of Death: Large-scale R&D Project Performance in a Japanese Diversified Company

  • Osawa Yoshitaka;Miyazaki Kumiko
    • Journal of Technology Innovation
    • /
    • v.14 no.2
    • /
    • pp.93-116
    • /
    • 2006
  • The purpose of this study is to contribute reference material that provides insight into innovative process management that increases R&D output in commercializing new products. A model of a process from research to commercialization with the cumulative profit and loss curve is put forward and hypotheses related to success and failure are developed at the stages up to product launch. Seventeen large projects that have resulted in successful product launches have been examined from the initial research stage to commercialization. Prefect duration, standardized cumulative R&D expenditures and research resource concentration are analyzed in terms of statistical method and patterns in cumulative profit and loss curves after product sales, as well as the reasons for and other aspects of success/failure are investigated and analyzed. Consequently, valuable information on future management tasks has been obtained such as: (1) project duration differs depending on market sectors, product types and presence/absence of materials research (2) cumulative profit and loss curves can be categorized into four patterns (3) reasons for failure can be divided into technological and market problem categories and (4) these factors have an impact on product sales.

  • PDF

SEVERE ACCIDENT ISSUES RAISED BY THE FUKUSHIMA ACCIDENT AND IMPROVEMENTS SUGGESTED

  • Song, Jin Ho;Kim, Tae Woon
    • Nuclear Engineering and Technology
    • /
    • v.46 no.2
    • /
    • pp.207-216
    • /
    • 2014
  • This paper revisits the Fukushima accident to draw lessons in the aspect of nuclear safety considering the fact that the Fukushima accident resulted in core damage for three nuclear power plants simultaneously and that there is a high possibility of a failure of the integrity of reactor vessel and primary containment vessel. A brief review on the accident progression at Fukushima nuclear power plants is discussed to highlight the nature and characteristic of the event. As the severe accident management measures at the Fukushima Daiich nuclear power plants seem to be not fully effective, limitations of current severe accident management strategy are discussed to identify the areas for the potential improvements including core cooling strategy, containment venting, hydrogen control, depressurization of primary system, and proper indication of event progression. The gap between the Fukushima accident event progression and current understanding of severe accident phenomenology including the core damage, reactor vessel failure, containment failure, and hydrogen explosion are discussed. Adequacy of current safety goals are also discussed in view of the socio-economic impact of the Fukushima accident. As a conclusion, it is suggested that an investigation on a coherent integrated safety principle for the severe accident and development of innovative mitigation features is necessary for robust and resilient nuclear power system.

Pullout capacity Evaluation of anchor and anchor system development to prevent release of anchors in expansion joint (신축이음장치의 앵커 인발성능 평가 및 나사 풀림 방지를 위한 앵커시스템 개발)

  • Ha, Sang-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.1
    • /
    • pp.65-72
    • /
    • 2010
  • The failure of expansion joints for bridges generally occurs in non-shrinkage mortar another problem is the release of anchors in expansion joints due to the impact and vibration that occurs when cars are driving over a bridge. In this study, to overcome the failure of expansion joints that is related to the failure of non-shrinkage mortar, an elastomeric mortar has been developed. The elastomeric mortar has a highly developed pull-out capacity compared with that of non-shrinkage mortar. Moreover, an anchor system that can be changed easily and prevent the fracture of expansion joints has been developed.

Experimental Characterization of Dynamic Tensile Strength in Unidirectional Carbon/Epoxy Composites

  • Taniguchi, Norihiko;Nishiwaki, Tsuyoshi;Kawada, Hiroyuki
    • Advanced Composite Materials
    • /
    • v.17 no.2
    • /
    • pp.139-156
    • /
    • 2008
  • This study aims to characterize the dynamic tensile strength of unidirectional carbon/epoxy composites. Two different carbon/epoxy composite systems, the unidirectional T700S/2500 and TR50S/modified epoxy, are tested at the static condition and the strain rate of $100\;s^{-1}$. A high-strain-rate test was performed using a tension-type split Hopkinson bar technique with a specific fixture for specimen. The experimental results demonstrated that both tensile strength increase with strain rate, while the fracture behaviors are quite different. By the use of the rosette analysis and the strain transformation equations, the strain rate effects of material principal directions on tensile strength are investigated. It is experimentally found that the shear strain rate produces the more significant contribution to strain rate effect on dynamic tensile strength. An empirical failure criterion for characterizing the dynamic tensile strength was proposed based on the Hash-in's failure criterion. Although the proposed criterion is just the empirical formula, it is in better agreement with the experimental data and quite simple.

Failure Rate Characteristics Analysis under Ground Mobile and Ground Fixed Environments (지상 기동 및 고정 환경하 고장률 특성 분석)

  • Yun, Hui-Sung;Jeong, Da-Un;Yoon, Jong-Sung;Lee, Seung-Hun
    • Journal of Applied Reliability
    • /
    • v.11 no.3
    • /
    • pp.293-303
    • /
    • 2011
  • Reliability Prediction using MIL-HDBK-217F has some restrictions due to its one modeling basis. One of the restrictions is caused by selecting one operating environment of a system, which is chosen regardless of its detailed conditions, e.g., external impact and vibration. Especially, an equipment, which is installed on a mobile vehicle though its movement is quasi-static, is controversial to designate its environment as ground mobile($G_M$), rather than ground fixed($G_F$). In this paper, failure rates were compared, which are computed using several moving time rates to total operating time. RiAC-HDBK-217Plus was used as the basic calculation model. In addition, $G_F$ conditioned failure rate was evaluated by comparing with that under $G_M$ environment but fixed state.

RELIABILITY ANALYSIS OF DIGITAL SYSTEMS IN A PROBABILISTIC RISK ANALYSIS FOR NUCLEAR POWER PLANTS

  • Authen, Stefan;Holmberg, Jan-Erik
    • Nuclear Engineering and Technology
    • /
    • v.44 no.5
    • /
    • pp.471-482
    • /
    • 2012
  • To assess the risk of nuclear power plant operation and to determine the risk impact of digital systems, there is a need to quantitatively assess the reliability of the digital systems in a justifiable manner. The Probabilistic Risk Analysis (PRA) is a tool which can reveal shortcomings of the NPP design in general and PRA analysts have not had sufficient guiding principles in modelling particular digital components malfunctions. Currently digital I&C systems are mostly analyzed simply and conventionally in PRA, based on failure mode and effects analysis and fault tree modelling. More dynamic approaches are still in the trial stage and can be difficult to apply in full scale PRA-models. As basic events CPU failures, application software failures and common cause failures (CCF) between identical components are modelled.The primary goal is to model dependencies. However, it is not clear which failure modes or system parts CCF:s should be postulated for. A clear distinction can be made between the treatment of protection and control systems. There is a general consensus that protection systems shall be included in PRA, while control systems can be treated in a limited manner. OECD/NEA CSNI Working Group on Risk Assessment (WGRisk) has set up a task group, called DIGREL, to develop taxonomy of failure modes of digital components for the purposes of PRA. The taxonomy is aimed to be the basis of future modelling and quantification efforts. It will also help to define a structure for data collection and to review PRA studies.

Performance Analysis of Scheduling Rules in Semiconductor Wafer Fabrication (반도체 웨이퍼 제조공정에서의 스케줄링 규칙들의 성능 분석)

  • 정봉주
    • Journal of the Korea Society for Simulation
    • /
    • v.8 no.3
    • /
    • pp.49-66
    • /
    • 1999
  • Semiconductor wafer fabrication is known to be one of the most complex manufacturing processes due to process intricacy, random yields, product diversity, and rapid changing technologies. In this study we are concerned with the impact of lot release and dispatching policies on the performance of semiconductor wafer fabrication facilities. We consider several semiconductor wafer fabrication environments according to the machine failure types such as no failure, normal MTBF, bottleneck with low MTBF, high randomness, and high MTBF cases. Lot release rules to be considered are Deterministic, Poisson process, WR(Workload Regulation), SA(Starvation Avoidance), and Multi-SA. These rules are combined with several dispatching rules such as FIFO (First In First Out), SRPT (Shortest Remaining Processing Time), and NING/M(smallest Number In Next Queue per Machine). We applied the combined policies to each of semiconductor wafer fabrication environments. These policies are assessed in terms of throughput and flow time. Basically Weins fabrication setup was used to make the simulation models. The simulation parameters were obtained through the preliminary simulation experiments. The key results throughout the simulation experiments is that Multi-SA and SA are the most robust rules, which give mostly good performance for any wafer fabrication environments when used with any dispatching rules. The more important result is that for each of wafer fabrication environments there exist the best and worst choices of lot release and dispatching policies. For example, the Poisson release rule results in the least throughput and largest flow time without regard to failure types and dispatching rules.

  • PDF

Numerical study on effect of integrity reinforcement on punching shear of flat plate

  • Ahsan, Raquib;Zahura, Fatema T.
    • Computers and Concrete
    • /
    • v.20 no.6
    • /
    • pp.731-738
    • /
    • 2017
  • Reinforced concrete flat plates consist of slabs supported directly on columns. The absence of beams makes these systems attractive due to advantages such as economical formwork, shorter construction time, less total building height with more clear space and architectural flexibility. Punching shear failure is usually the governing failure mode of flat plate structures. Punching failure is brittle in nature which induces more vulnerability to this type of structure. To analyze the flat plate behavior under punching shear, twelve finite element models of flat plate on a column with different parameters have been developed and verified with experimental results. The maximum range of variation of punching stress, obtained numerically, is within 10% of the experimental results. Additional finite element models have been developed to analyze the influence of integrity reinforcement, clear cover and column reinforcement. Variation of clear cover influences the punching capacity of flat plate. Proposed finite element model can be a substitute to mechanical model to understand the influence of clear cover. Variation of slab thickness along with column reinforcement has noteworthy impact on punching capacity. From the study it has been noted that integrity reinforcement can increase the punching capacity as much as 19 percent in terms of force and 101 percent in terms of deformation.

Simplified beam model of high burnup spent fuel rod under lateral load considering pellet-clad interfacial bonding influence

  • Lee, Sanghoon;Kim, Seyeon
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1333-1344
    • /
    • 2019
  • An integrated approach of model simplification for high burnup spent nuclear fuel is proposed based on material calibration using optimization. The spent fuel rods are simplified into a beam with a homogenous isotropic material. The proposed approach of model simplification is applied to fuel rods with two kinds of interfacial configurations between the fuel pellets and cladding. The differences among the generated models and the effects of interfacial bonding efficiency are discussed. The strategy of model simplification adopted in this work is to force the simplified beam model of spent fuel rods to possess the same compliance and failure characteristics under critical loads as those that result in the failure of detailed fuel rod models. It is envisioned that the simplified model would enable the assessment of fuel rod failure through an assembly-level analysis, without resorting to a refined model for an individual fuel rod. The effective material properties of the simplified beam model were successfully identified using the integrated optimization process. The feasibility of using the developed simplified beam models in dynamic impact simulations for a horizontal drop condition is examined, and discussions are provided.