• 제목/요약/키워드: impact design

검색결과 5,070건 처리시간 0.036초

진동해석에 의해 스프레더용 충격흡수기의 최적설계 (Optimum Design of Impact Absorbing System for Spreader by Vibration Analysis)

  • 홍도관;김동영;안찬우;한근조
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.689-693
    • /
    • 1997
  • This paper deals wth the impact and the transient analysis of the impact absorbing system consist of double damping. piston and sprlng system in spreader to increaas efficlcncy of it. It shows the optimum damping coefficient and spring constant under the limited stroku of Impact absorbing system using for crane spreader and the optimum condition of impact absorbing system causing certain reaction force as time. which is characteristic of dashpot and rubber. This system absorbed 11.5 and 88.5 % impact energq at the spring and the damper respectively.

  • PDF

낙하/충격해석을 통한 전자렌지의 내충격설계 (Design for Improving Impact Resistance of Microwave Oven Using Drop/Impact Analysis)

  • 김진곤;김정윤;김흥수
    • 동력기계공학회지
    • /
    • 제13권3호
    • /
    • pp.53-58
    • /
    • 2009
  • The importance of cost reduction has grown bigger to ensure the competetive power of products in the electric home appliances industry. Thus, it is necessary to assess the reliability due to drop-impact happenning in process of distribution of microwave ovens with the panel and cavity of thinner thickness for cost reduction. In the present study, the drop/impact simulation using the explicit code LS-DYNA3D has been carried out for improving the impact resistance of a microwave oven. This CAE-based design approach can be successfully applied to enhance the deteriorated dynamic behavior under the impact conditions of dropping height 70cm according to ISTA procedure 2A.

  • PDF

충돌에 대한 흡수 성능을 가진 크래쉬 박스의 형상설계 (Shape Design of Crash Box with Absorption Performance against Impact)

  • 조재웅;한문식
    • 한국생산제조학회지
    • /
    • 제20권2호
    • /
    • pp.169-173
    • /
    • 2011
  • Crash box is introduced to vehicle design to improve the impact performance and reduce the damage of vehicle body at impact speed. The crash box behind bumper can absorb impact energy effectively to improve vehicle safety. Repair cost at collision accident can be cut down by use of this box. The configuration of car body must be designed by considering the characteristic of material due to the deformation of car body happened at impact. Many papers have been published about material of crash box all over the world. The study of crash box with tube expansion type has been going on Korea. This study is done by the simulation analysis about front collisions against 5 kinds of aluminum crash boxes with the basic structure of square section.

공동주택의 바닥충격진동 저감을 위한 유한요소법 및 다구찌법의 활용 (Application of Finite Element Method and Taguchi Method to Reduce Floor Impact Vibration in Apartment Buildings)

  • 서상호;전진용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.385-388
    • /
    • 2005
  • Finite element method and Taguchi method were used to reduce the floor impact vibration of the reinforced concrete slab in the apartment buildings. At first, experimental results show that sound peak components to influence the rating of floor impact sound insulation were coincident with natural frequencies of the reinforced concrete slab, and there is a high linear relation between floor impact vibration and sound. The tables of orthogonal arrays were used for finite element analysis with 5 factors related to slab shape parameters and its results were analyzed by statistical method. The most effective factor to reduce the floor impact vibration was the length of living/kitchen room and the floor impact vibration was predicted by 30% reduction in the acceleration peak by the optimal design values of the factors.

  • PDF

쇄석기의 충격하중 정량화에 대한 연구 (A Study on the Impact Load Quantification of the Jaw Crusher)

  • 홍성주;양해정
    • 드라이브 ㆍ 컨트롤
    • /
    • 제16권2호
    • /
    • pp.1-7
    • /
    • 2019
  • Jaw crusher is a device that breaks rock collected from mines or quarries to produce aggregates of the size desired by user. A representative method for measuring load is to measure them by attaching force sensors directly to the part where the load is generated. However, the direct method has many limitations such as high-impact loads generation in equipment or space constraints, sensor capacities and costs. Therefore, Transfer Path Analysis (TPA) was used to indirectly measure impact loads by attaching acceleration sensors. In this study, both direct and TPA methods were used to measure the impact load of Jaw crusher. This study finally quantifies the impact of the load generated by the Jaw crusher using direct method and TPA method, and comparing the impact load measured calculated the derive the error rate.

Design of small impact test device for concrete panels subject to high speed collision

  • Kim, Sanghee;Jeong, Seung Yong;Kang, Thomas H.K.
    • Advances in concrete construction
    • /
    • 제7권1호
    • /
    • pp.23-30
    • /
    • 2019
  • Five key items were used to create an economical and physically small impact test device for concrete panels subject to high speed collision: an air-compressive system, carbon steel pipe, solenoid valve, carrier and carrier-blocking, and velocity measurement device. The impact test device developed can launch a 20 mm steel spherical projectile at over 200 m/s with measured impact and/or residual velocity. Purpose for development was to conduct preliminary materials tests, prior to large-scale collision experiments. In this paper, the design process of the small impact test device was discussed in detail.

충격과 마모를 고려한 원자로 핵연료봉 지지격자의 설계 (Design of a Nuclear Fuel Spacer Grid Considering Impact and Wear)

  • 이현아;김종기;송기남;박경진
    • 대한기계학회논문집A
    • /
    • 제31권10호
    • /
    • pp.999-1008
    • /
    • 2007
  • The spacer grid set is a component in the nuclear fuel assembly. The set supports the fuel rods safely. Therefore, the spacer grid set should have sufficient strength for the external impact forces such as earthquake. The fretting wear occurs between the spring of the fuel rod and the spacer grid due to flow-induced vibration. Conceptual design of the spacer grid set is performed based on the Independence Axiom of axiomatic design. Two functional requirements are defined for the impact load and the fretting wear, and corresponding design parameters are selected. The overall flow of design is defined according to the application of axiomatic design. Design for the impact load is carried out by using nonlinear dynamic analysis to determine the length of the dimple. Topology optimization is carried out to determine a new configuration of the spring. The fretting wear is reduced by shape optimization using the homology theory. The deformation of a structure is called homologous if a given geometrical relationship holds before, during, and after the deformation. In the design to reduce the fretting wear, the deformed shape of the spring should be the same as that of the fuel rod. This condition is transformed to a function and considered as a constraint in the shape optimization process. The fretting wear is expected to be reduced due to the homology constraint. The objective function is minimizing the maximum stress to allow a slight plastic deformation. Shape optimization results are confirmed through nonlinear static analysis.

명품쇼핑성향과 구매행동이 자기만족도에 미치는 영향 (Impact on self-satisfaction of shopping tendencies and purchasing behaviors for luxury goods)

  • 이정민;박숙현;이경림
    • 복식문화연구
    • /
    • 제25권1호
    • /
    • pp.16-31
    • /
    • 2017
  • This paper aims to identify the impact on self-satisfaction of shopping tendencies and purchase behaviors for luxury goods. The research was conducted by survey method using questionnaires. The subjects of this study were female consumers from 20 to years old with a high purchasing capability for luxury goods. Using the statistics program SPSS 21.0, factor analysis, reliability analysis, one-way ANOVA, and multiple-regression analysis were executed. The analysis results are summarized below. For shopping tendency depending on ages, pleasure pursuit tendency showed insignificant difference in 40~50s, but significant difference in 20~30s. For the self-satisfaction, the interpersonal satisfaction showed the difference by age group, which was much higher in the respondents in 30~50s than those in 20s. Individuality pursuit tendency and rational shopping tendency had impact on self-satisfaction and rational shopping tendency on interpersonal satisfaction in 20s. Pleasure pursuit tendency and rational shopping tendency had impact on self-satisfaction and interpersonal satisfaction and pleasure pursuit tendency on the economic satisfaction in 30s. Pleasure pursuit tendency had impact on self-satisfaction and economic satisfaction and rational satisfaction on interpersonal satisfaction in 40s. Pleasure pursuit tendency and rational shopping tendency had impact on self-satisfaction and interpersonal satisfaction in 50s. High quality had impact on self-satisfaction and economic satisfaction and practicality on interpersonal satisfaction in 20s. High quality had impact on self-satisfaction and interpersonal satisfaction in 30s. High quality had impact on interpersonal satisfaction in 40s. High quality had impact on all elements of self-satisfaction for the respondents in 50s, practicality had negative impact on interpersonal satisfaction.

Safety assessment of Generation III nuclear power plant buildings subjected to commercial aircraft crash Part II: Structural damage and vibrations

  • Qu, Y.G.;Wu, H.;Xu, Z.Y.;Liu, X.;Dong, Z.F.;Fang, Q.
    • Nuclear Engineering and Technology
    • /
    • 제52권2호
    • /
    • pp.397-416
    • /
    • 2020
  • Investigations of the commercial aircraft impact effect on nuclear island infrastructures have been drawing extensive attention, and this paper aims to perform the safety assessment of Generation III nuclear power plant (NPP) buildings subjected to typical commercial aircrafts crash. At present Part II, based on the verified finite element (FE) models of aircrafts Airbus A320 and A380, as well as the NPP containment and auxiliary buildings in Part I of this paper, the whole collision process is reproduced numerically by adopting the coupled missile-target interaction approach with the finite element code LS-DYNA. The impact induced damage of NPP plant under four impact locations of containment (cylinder, air intake, conical roof and PCS water tank) and two impact locations of auxiliary buildings (exterior wall and roof of spent fuel pool room) are evaluated. Furthermore, by considering the inner structures in the containment and raft foundation of NPP, the structural vibration analyses are conducted under two impact locations (middle height of cylinder, main control room in the auxiliary buildings). It indicates that, within the discussed scenarios, NPP structures can withstand the impact of both two aircrafts, while the functionality of internal equipment on higher floors will be affected to some extent under impact induced vibrations, and A380 aircraft will cause more serious structural damage and vibrations than A320 aircraft. The present work can provide helpful references to assess the safety of the structures and inner equipment of NPP plant under commercial aircraft impact.

보론강을 이용한 리어 범퍼 임팩트빔의 경량 설계 및 해석 (Light-weight Design and Simulation of Automotive Rear Bumper Impact Beam Using Boron Steels)

  • 김기주;한창평;임종한;이영숙;원시태;이재웅
    • 한국자동차공학회논문집
    • /
    • 제20권2호
    • /
    • pp.98-102
    • /
    • 2012
  • Increasing the fuel economy has been an inevitable issue for the development of new cars, and one of the important measures to improve the fuel economy is to decrease the vehicle weight. In order to obtain this goal, the researches about lighter, stronger and the well impact absorbing bumper impact beam have been studied without sacrificing bumper safety. In this study, the overall weight reduction possibility of rear bumper impact beam could be examined based on the variation of frontal, offset and corner impact crash capability by substituting a ultra high strength steel material (boron steel ) having tensile strength of 1.5 GPa grade instead of conventional steels. In addition, the section variations (open section, closed section, open section with 5 stays) of the bumper impact beam structure were examined carefully. It could be reached that this analysis could be well established and be contributed for design guide and the optimum design conditions of the automotive rear bumper impact beam development.