• Title/Summary/Keyword: impact damages

Search Result 310, Processing Time 0.025 seconds

A Study on the National and International Research Trend of Biodiversity Assessment method and Its Application of Environmental Impact Assessment (생물다양성 평가기법의 국내외 연구동향 분석 및 환경영향평가 적용가능성에 대한 연구)

  • Koo, Meehyun;Lee, Dong-Kun
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.1
    • /
    • pp.119-132
    • /
    • 2012
  • Biodiversity is a key element of ecosystem of which function provides essential product and service in human life. In the course since development projects often causes damages to biodiversity, environmental impact assessment technique must be capable of accurately assessing potential impact from flora and fauna and to entire ecosystem. Korea needs improvement of its assessment technique that is compatible with Korean environmental regulatory standard that is generally stricter than that of most countries. This study attempts to explore both domestic and overseas biodiversity assessment techniques and analyze each stage of environmental impact assessment. The data is collected from numbers of literatures selected by navigating both domestic and overseas literature database with certain keywords. Among the 44 selected papers, overseas publications outnumber those of domestics, and there are more researches on assessment methodology of biodiversity than assessment tool and model. In terms of environmental impact assessment, the number of papers on environmental impact forecast exceeds the numbers of papers on current state of environment and the impact minimizing solution. Therefore, contents and trends of those researches in the different stages of environmental impact assessment discussed in this paper not only suggest potential impact on biodiversity and minimization solutions in detail, but is also a valuable resource particularly for biodiversity relevant environmental assessment technique improvement in Korea. Proposing of a new direction of improvement in biodiversity assessment techniques makes this study significant, and further research for preservation of biodiversity should follow up to provide an improvement scheme for biodiversity assessment techniques in the future.

Damage and vibrations of nuclear power plant buildings subjected to aircraft crash part II: Numerical simulations

  • Li, Z.R.;Li, Z.C.;Dong, Z.F.;Huang, T.;Lu, Y.G.;Rong, J.L.;Wu, H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.3085-3099
    • /
    • 2021
  • Investigations of large commercial aircraft impact effect on nuclear power plant (NPP) buildings have been drawing extensive attentions, particularly after the 9/11 event, and this paper aims to numerically assess the damage and vibrations of NPP buildings subjected to aircrafts crash. In Part I of present paper, two shots of reduce-scaled model test of aircraft impact on NPP were conducted based on the large rocket sled loading test platform. In the present part, the numerical simulations of both scaled and prototype aircraft impact on NPP buildings are further performed by adopting the commercial program LS-DYNA. Firstly, the refined finite element (FE) models of both scaled aircraft and NPP models in Part I are established, and the model impact test is numerically simulated. The validities of the adopted numerical algorithm, constitutive model and the corresponding parameters are verified based on the experimental NPP model damages and accelerations. Then, the refined simulations of prototype A380 aircraft impact on a hypothetical NPP building are further carried out. It indicates that the NPP building can totally withstand the impact of A380 at a velocity of 150 m/s, while the accompanied intensive vibrations may still lead to different levels of damage on the nuclear related equipment. Referring to the guideline NEI07-13, a maximum acceleration contour is plotted and the shock damage propagation distances under aircraft impact are assessed, which indicates that the nuclear equipment located within 11.5 m from the impact point may endure malfunction. Finally, by respectively considering the rigid and deformable impacts mainly induced by aircraft engine and fuselage, an improved Riera function is proposed to predict the impact force of aircraft A380.

Low-velocity impact performance of the carbon/epoxy plates exposed to the cyclic temperature

  • Fathollah Taheri-Behrooz;Mahdi Torabi
    • Steel and Composite Structures
    • /
    • v.48 no.3
    • /
    • pp.305-320
    • /
    • 2023
  • The mechanical properties of polymeric composites are degraded under elevated temperatures due to the effect of temperature on the mechanical behavior of the resin and resin fiber interfaces. In this study, the effect of temperature on the impact response of the carbon fiber reinforced plastics (CFRP) was investigated at low-velocity impact (LVI) using a drop-weight impact tester machine. All the composite plates were fabricated using a vacuum infusion process with a stacking sequence of [45/0_2/-45/90_2]s, and a thickness of 2.9 mm. A group of the specimens was exposed to an environment with a temperature cycling at the range of -30 ℃ to 65 ℃. In addition, three other groups of the specimens were aged at ambient (28 ℃), -30 ℃, and 65 ℃ for ten days. Then all the conditioned specimens were subjected to LVI at three energy levels of 10, 15, and 20 J. To assess the behavior of the damaged composite plates, the force-time, force-displacement, and energy-time diagrams were analyzed at all temperatures. Finally, radiography, optical microscopy, and scanning electron microscopy (SEM) were used to evaluate the effect of the temperature and damages at various impact levels. Based on the results, different energy levels have a similar effect on the LVI behavior of the samples at various temperatures. Delamination, matrix cracking, and fiber failure were the main damage modes. Compared to the samples tested at room temperature, the reduction of temperature to -30 ℃ enhanced the maximum impact force and flexural stiffness while decreasing the absorbed energy and the failure surface area. The temperature increasing to 65 ℃ increased the maximum impact force and flexural stiffness while decreasing the absorbed energy and the failure surface area. Applying 200 thermal cycles at the range of -30 ℃ to 65 ℃ led to the formation of fine cracks in the matrix while decreasing the absorbed energy. The maximum contact force is recorded under cyclic temperature as 5.95, 6.51 and 7.14 kN, under impact energy of 10, 15 and 20 J, respectively. As well as, the minimum contact force belongs to the room temperature condition and is reported as 3.93, 4.94 and 5.71 kN, under impact energy of 10, 15 and 20 J, respectively.

Effect of Root Amount on Wind Damage in Rice

  • Chang, Jae-Ki;Yeo, Un-Sang;Oh, Byong-Geun;Kang, Jung-Hoon;Yang, Sae-Jun;Kim, Soon-Chul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.2
    • /
    • pp.108-112
    • /
    • 2003
  • Foehn damage on rice plant is one of the important abiotic stresses in eastern costal area of Korea. To know the relationship between foehn impact and morphological traits of rice, wind tunnel method was used with 106 rice cultivars. Less influencing traits on foehn were short panicle, large panicle number per hill, thin panicle neck, and the flag leaf of narrow, short and thick. Leaf pubescence reduced the impact on foehn. 'Naepungbyeo' belong-ed to foehn tolerant varietal group, while 'Ansanbyeo' belonged to the opposite group. Three levels of root cutting treatment with two rice cultivars were conducted to evaluate the foehn impact using wind tunnel. The severity of wind damages was followed the sigmoidal curve duration of wind tunnel treatment were prolonged. Different responses of root cutting to wind tunnel treatment could be used to evaluate the severity of the foehn impact. 'Naepungbyeo' was one of the less implausible cultivars on foehn. 'Nae-pungbyeo' showed tolerant response to wind under 21% root removing treat-ment (20㎝ root cutting), however 'Ansanbyeo' was wilted under the same treatment. In case of 35 % root removing treatment(10㎝ root cutting), both rice cultivars failed to alive against foehn wind.

A Study on Impact Control of Planar Redundant Manipulator using A Intelligent Control (지능제어를 이용한 평면 여자유도 매니퓰레이터의 충돌제어에 관한 연구)

  • Yoo, Bong-Soo;Koo, Seong-Wan;Joh, Joong-Seon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.6
    • /
    • pp.787-796
    • /
    • 2008
  • When the manipulator collides with surroundings, there occurs an impulse. To reduce the impulse, the self motion should maintain the manipulator's position by the minimally effective mass. At this time, we can use the local joint torque minimization algorithm to resolve the redundancy. In this study, to reduce the impulse and damages by the impact between the manipulator and surroundings, new control algorithm for the minimization of the joint torque using the kinetic redundancy and the impact minimization is proposed. It adapts fuzzy logic and genetic algorithm to the conventional local joint torque minimization algorithm. The proposed algorithm is applied to a 3-DOF redundant planar manipulator. Simulation results show that the proposed algorithm works well.

IMPACT ANALYSES AND TESTS OF CONCRETE OVERPACKS OF SPENT NUCLEAR FUEL STORAGE CASKS

  • Lee, Sanghoon;Cho, Sang-Soon;Jeon, Je-Eon;Kim, Ki-Young;Seo, Ki-Seog
    • Nuclear Engineering and Technology
    • /
    • v.46 no.1
    • /
    • pp.73-80
    • /
    • 2014
  • A concrete cask is an option for spent nuclear fuel interim storage. A concrete cask usually consists of a metallic canister which confines the spent nuclear fuel assemblies and a concrete overpack. When the overpack undergoes a missile impact, which might be caused by a tornado or an aircraft crash, it should sustain an acceptable level of structural integrity so that its radiation shielding capability and the retrievability of the canister are maintained. A missile impact against a concrete overpack produces two damage modes, local damage and global damage. In conventional approaches [1], those two damage modes are decoupled and evaluated separately. The local damage of concrete is usually evaluated by empirical formulas, while the global damage is evaluated by finite element analysis. However, this decoupled approach may lead to a very conservative estimation of both damages. In this research, finite element analysis with material failure models and element erosion is applied to the evaluation of local and global damage of concrete overpacks under high speed missile impacts. Two types of concrete overpacks with different configurations are considered. The numerical simulation results are compared with test results, and it is shown that the finite element analysis predicts both local and global damage qualitatively well, but the quantitative accuracy of the results are highly dependent on the fine-tuning of material and failure parameters.

Influence of Hygrothermals on Residual Fatigue Bending Strength of CFRP Composite Laminates (CFRP적층재의 잔류피로굽힘강도애 미치는 열습의 영향)

  • 박노식;임광희;양인영
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.2
    • /
    • pp.27-36
    • /
    • 1997
  • This paper evaluates the static and fatigue bending strengths of CFRP (carbon fiber reinforced plastic) laminates subjected to hygrothermals. The specimens which had different stacking composition, orthotropic and quasi-isotropic laminated plates, were prepared for this experiment. A steel ball launched by the air gun collides against CFRP laminates to generate impact damages, and the 3-point fatigue bending test is carried out by using the impacted laminates to investigate the influence of hygrothermals on the effect on the residual bending fatigue strength of CFRP laminates.

  • PDF

CONSTRUCTION DELAY IN INTERNATIONAL PROJECTS: WITH SPECIAL REFERENCE TO GULF AREA CAUSES, DAMAGE ASSESSMENTS AND ENTITLEMENTS

  • Sami Fereig;Nabil Kartam
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.758-763
    • /
    • 2005
  • For international projects in general and the projects in the Gulf area in Particular, the most common cause of construction disputes and claims is construction delay. This paper will present different surveys to identify the causes of delay, the parties responsible, and how delay can be avoided. This paper will outline how these factors impact damage assessment and entitlement. Furthermore, a case study will be presented to show how the responsibility and damages due to delay are assessed and how entitlements are calculated.

  • PDF

Characteristic Analysis of Falling Weight Impact Response in CF/Epoxy Composite Plates Using Frequency Responses (주파수 응답을 이용한 CF/Epoxy 복합적층판의 낙추충격 특성평가)

  • 임광희;박노식;김영남;김선규;양인영
    • Composites Research
    • /
    • v.16 no.2
    • /
    • pp.9-17
    • /
    • 2003
  • We have implemented a system of falling weight impact tester in order to evaluate the impact energy absorbing characteristics and impact strength of CFRP laminate plates. The absorbed energy of T-300 orthotropic composites is higher than that of quasi-isotropic specimen over impact energy 7J, but in case of using T700 fiber, much difference does not show. Also, absorbed energy of T-300 orthotropic composites, which are composed of the same stacking number and orientation became more than that of T700 fiber specimen however there was no big difference in case of quasi-isotropic specimens. Delamination area of impacted specimens was measured with ultrasonic C-scanner to find correlation between impact energy and delamination area. Delamination area and frequency responses were evaluated between impacted and unimpacted specimens. There is a strong correlation between frequency responses and impact-induced delamination. The presence and scale of damages have been investigated based on the variations of frequency responses.

Development of Structural Analysis System of Bow Flare Structure(1) - Prediction of Wave Impact Load Characteristics - (선수 구조부 구조해석 시스템 개발(1) - 파랑충격하중 특성의 추정 -)

  • S.G. Lee;M.S. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.4
    • /
    • pp.77-86
    • /
    • 1999
  • The bow flare structure of a ship is designed considering wave impact loads largely caused by relative motion of the ship and wave at rough sea. Empirical design is still used because impact phenomenon and structural behaviour due to wave impact load can not examined accurately. The objective of this study is, as the first step, to predict wave impact loads giving the structural damages to the bow flare structure from the damage data inversely, using dynamic nonlinear finite element code LS/DYNA3D, and to perform various parametric studies of wave impact pressure curve for its characteristics, such as peak height, duration time, tail height, rise time, etc.. The followings were obtained from this study: Dynamic structural responses against wave impact loads are largely affected by impact pressure impulse whose amount during duration time until peak deformation is very important.

  • PDF