• Title/Summary/Keyword: impact damage detection

Search Result 75, Processing Time 0.023 seconds

Fatigue Damage Detection and Vibration Sensing Using Intensity-Based Optical Fiber Sensors (광강도형 광섬유센서를 이용한 피로손상 및 진동감지)

  • 양유창;전호찬;한경섭
    • Composites Research
    • /
    • v.13 no.1
    • /
    • pp.89-97
    • /
    • 2000
  • Fatigue damage detection and vibration sensing for a laminated composites and impact location detection for a steel beam have been carried out using optical fiber sensor. Intensity based optical fiber sensor is constructed by placing two cleaved fiber end in a hollow glass tube, and multiple reflection within the cavity is considered. Fatigue signals are measured by embedded optical fiber, surface mounted optical fiber sensor and strain gage simultaneously. For vibration sensing, optical fiber sensor is mounted on the carbon fiber composite beam and its response to free vibration and forced vibration is investigated. In impact location detection, two optical fiber sensors are used and the information obtained from two sensors is arrival time delay of vibration caused by impact. Impact location can be calculated from this time delay. The obtained results show that the intensity based optical fiber sensor provide reliable data during long-term fatigue loading, unlike strain gage which deteriorate during the early part of the fatigue test. Optical fiber sensor signals coincide with gap sensor in vibration sensing. The precise locations of impact can be detected within 4.1% error limit.

  • PDF

NDE of Low-Velocity Impact Damage in GFRP Using Infrared Thermography Techniques

  • Kim, Ghiseok;Lee, Kye-Sung;Hur, Hwan;Kim, Sun-Jin;Kim, Geon-Hee
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.3
    • /
    • pp.206-214
    • /
    • 2015
  • In this study, low-velocity impact damage (LVID) in glass fiber reinforced plastic (GFRP) was investigated using pulse thermography (PT) and lock-in thermography (LIT) techniques. The main objective of this study was to evaluate the detection performance of each technique for LVID in GFRP. Unidirectional and cross-ply GFRPs were prepared with four energy levels using a drop weight impact machine and they were inspected from the impact side, which may be common in actual service conditions. When the impacted side was used for both inspection and thermal loading, results showed that the suggested techniques were able to identify the LVID which is barely visible to the naked eye. However, they also include limitations that depend on the GFRP thickness at the location of the delamination produced by the lowest impact energy of five joule.

Performance Enhancement of System Identification Model for Vibration-Based Damage Detection in Flawed Plate-Girder Bridges (결함이 있는 판형교의 진동기초 손상검색을 위한 구조식별모델의 성능향상)

  • 백종훈;김정태;류연선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.443-450
    • /
    • 2003
  • System identification techniques can be used to build a baseline modal model for a flawed structure that has no modal information on its as-built state. The accuracy of a system identification proposed by Stubbs and Kim is analyzed for plate-girder bridges and its impact on the accuracy of damage detection in those structures is also analyzed. A laboratory-scale model plate-girder is experimentally tested and the initial four bending modes are examined for certain damage scenarios. The performance of individual baseline modal models is assessed by detecting damage in the model structure.

  • PDF

Impact of Measurement Temperature on Frequency-Based Damage Detection Method (계측온도조건이 고유진동수 기반 손상검색기법에 미치는 영향)

  • 김정태;윤정방;이진학;류연선;조현만
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.535-540
    • /
    • 2003
  • The objective of this paper is to assess the variability of modal properties caused by temperature effects and to adjust modal data used for frequency-based damage detection in plate-girder bridges. First, experiments on model plate-girder bridges are described. Next, the relationship between temperature and natural frequencies is assessed and a set of empirical frequency-correction formula are analyzed for the test structure. Finally, a frequency-based method is used to locate and estimate severity of damage in the test structure using experimental modal data which are adjusted by the frequency-correction formula. Here, local damage in beam-type structures is detected by using measured frequencies and analytical mode shapes.

  • PDF

Impact and Damage Detection Method Utilizing L-Shaped Piezoelectric Sensor Array (L-형상 압전체 센서 배열을 이용한 충격 및 손상 탐지 기법 개발)

  • Jung, Hwee-Kwon;Lee, Myung-Jun;Park, Gyuhae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.5
    • /
    • pp.369-376
    • /
    • 2014
  • This paper presents a method that integrates passive and active-sensing techniques for the structural health monitoring of plate-like structures. Three piezoelectric transducers are deployed in a L-shape to detect and locate an impact event by measuring and processing the acoustic emission data. The same sensor arrays are used to estimate the subsequent structural damage using guided waves. Because this method does not require a prior knowledge of the structural parameters, such as the wave velocity profile in various directions, accurate results could be achieved even on anisotropic or curved plates. A series of experiments was performed on plates, including a spar-wing structure, to demonstrate the capability of the proposed method. The performance was also compared to that of traditional approaches and the superior capability of the proposed method was experimentally demonstrated.

Impact Force and Acoustic Analysis on Composite Plates with In-plane Loading (면내하중을 받는 복합적층판에 대한 충격하중 및 음향 해석)

  • Kim, Sung-Joon;Hwang, In-Hee;Hong, Chang-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.2
    • /
    • pp.179-186
    • /
    • 2012
  • The potential hazards resulting from a low-velocity impact(bird-strike, tool drop, runway debris, etc.) on aircraft structures, such as engine nacelle or leading edges has been a long-term concern to the aircraft industry. Certification authorities require that exposed aircraft components must be tested to prove their capability to withstand low-velocity impact without suffering critical damage. In most of the past research studies unloaded specimens have been used for impact tests, however, in reality it is much more likely that a composite structure is exposed to a certain stress state when it is being impacted, which can have a significant effect on the impact performance. And the radiated impact sound induced by impact is analyzed for the damage detection evaluation. In this study, an investigation was undertaken to evaluate the effect in-plane loading on the impact force and sound of composite laminates numerically.

Damage identification using chaotic excitation

  • Wan, Chunfeng;Sato, Tadanobu;Wu, Zhishen;Zhang, Jian
    • Smart Structures and Systems
    • /
    • v.11 no.1
    • /
    • pp.87-102
    • /
    • 2013
  • Vibration-based damage detection methods are popular for structural health monitoring. However, they can only detect fairly large damages. Usually impact pulse, ambient vibrations and sine-wave forces are applied as the excitations. In this paper, we propose the method to use the chaotic excitation to vibrate structures. The attractors built from the output responses are used for the minor damage detection. After the damage is detected, it is further quantified using the Kalman Filter. Simulations are conducted. A 5-story building is subjected to chaotic excitation. The structural responses and related attractors are analyzed. The results show that the attractor distances increase monotonously with the increase of the damage degree. Therefore, damages, including minor damages, can be effectively detected using the proposed approach. With the Kalman Filter, damage which has the stiffness decrease of about 5% or lower can be quantified. The proposed approach will be helpful for detecting and evaluating minor damages at the early stage.

Development of Fiber Optic Accelerometer for Third-Party Damage Detection (타공사 감시를 위한 광섬유 가속도계의 개발)

  • Park, Ho-Rim;Choe, Jae-Bung;Kim, Yeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1551-1558
    • /
    • 2001
  • Recently, a number of underground pipelines have been drastically increased. The integrity of these buried pipelines, especially gas transmitting pipelines, is of importance due to an explosive characteristic of natural gas. The third party damage is known as one of the most critical factor which causes fatal accidents. For this reason, a number of systems detecting third party damage are under development. The major concern in the development of third party damage detection system is to transmit vibration signals out of accelerometer to signal conditioner and data acquisition system without any interference caused by noise. The objective of this paper is to develope a fiber optic accelerometer applicable to third party damage detection system. A fiber optic accelerometer was developed by use of combining principles of one degree of freedom vibration model and an extrinsic Fabry-Perot interferometer. The developed fiber optic accelerometer was designed to perform with a sensitivity of 0.06mVg, a frequency range of less than 6kHz and an amplitude range of -200g to 200g. The developed, accelerometer was compared with a piezoelectric accelerometer and calibrated. In order to verify the developed accelerometer, the field experiment was performed. From the field experiment, vibration signals and the location of impact were successfully detected. The developed accelerometer is expected to be used for the third party damage detection system which requires long distance transmission of signals.

Structural damage detection in presence of temperature variability using 2D CNN integrated with EMD

  • Sharma, Smriti;Sen, Subhamoy
    • Structural Monitoring and Maintenance
    • /
    • v.8 no.4
    • /
    • pp.379-402
    • /
    • 2021
  • Traditional approaches for structural health monitoring (SHM) seldom take ambient uncertainty (temperature, humidity, ambient vibration) into consideration, while their impacts on structural responses are substantial, leading to a possibility of raising false alarms. A few predictors model-based approaches deal with these uncertainties through complex numerical models running online, rendering the SHM approach to be compute-intensive, slow, and sometimes not practical. Also, with model-based approaches, the imperative need for a precise understanding of the structure often poses a problem for not so well understood complex systems. The present study employs a data-based approach coupled with Empirical mode decomposition (EMD) to correlate recorded response time histories under varying temperature conditions to corresponding damage scenarios. EMD decomposes the response signal into a finite set of intrinsic mode functions (IMFs). A two-dimensional Convolutional Neural Network (2DCNN) is further trained to associate these IMFs to the respective damage cases. The use of IMFs in place of raw signals helps to reduce the impact of sensor noise while preserving the essential spatio-temporal information less-sensitive to thermal effects and thereby stands as a better damage-sensitive feature than the raw signal itself. The proposed algorithm is numerically tested on a single span bridge under varying temperature conditions for different damage severities. The dynamic strain is recorded as the response since they are frame-invariant and cheaper to install. The proposed algorithm has been observed to be damage sensitive as well as sufficiently robust against measurement noise.

Integrity Estimation for Concrete Pontoon of Floating Structure (콘크리트 부유식 구조물 함체의 건전성 평가)

  • Park, Soo-Yong;Kim, Min-Jin;Seo, Young-Kyo
    • Journal of Navigation and Port Research
    • /
    • v.37 no.5
    • /
    • pp.527-533
    • /
    • 2013
  • This paper presents damage detection and estimation of stiffness parameter on a concrete scale model and a real structure of concrete pontoon using dynamic properties such as mode shapes and natural frequencies. In case of damage detection, dynamic impact test on a concrete scale model is accomplished to extract mode shapes and the practicality is verified by utilizing a damage detection technique. And the stiffness parameter of a real structure of concrete pontoon was estimated via system identification technique using the natural frequencies of the structure. The results indicate that the damaged elements of the scale model are found exactly using damage detection technique and the effective stiffness property of the real structure of concrete pontoon can be estimated by system identification technique.