• Title/Summary/Keyword: impact bending energy

Search Result 93, Processing Time 0.024 seconds

Experimental investigation of impact behaviour of shear deficient RC beam to column connection

  • Murat, Aras;Tolga, Yilmaz;Ozlem, Caliskan;Ozgur, Anil;R. Tugrul, Erdem;Turgut, Kaya
    • Structural Engineering and Mechanics
    • /
    • v.84 no.5
    • /
    • pp.619-632
    • /
    • 2022
  • Reinforced concrete (RC) structures may be subjected to sudden dynamic impact loads such as explosions occurring for different reasons, the collision of masses driven by rockfall, flood, landslide, and avalanche effect structural members, the crash of vehicles to the highway and seaway structures. Many analytical, numerical, and experimental studies focused on the behavior of RC structural elements such as columns, beams, and slabs under sudden dynamic impact loads. However, there is no comprehensive study on the behavior of the RC column-beam connections under the effect of sudden dynamic impact loads. For this purpose, an experimental study was performed to investigate the behavior of RC column-beam connections under the effect of low-velocity impact loads. Sixteen RC beam-column connections with a scale of 1/3 were manufactured and tested under impact load using the drop-weight test setup. The concrete compressive strength, shear reinforcement spacing in the beam, and input impact energy applied to test specimens were taken as experimental variables. The time histories of impact load acting on test specimens, accelerations, and displacements measured from the test specimens were recorded in experiments. Besides, shear and bending crack widths were measured. The effect of experimental variables on the impact behavior of RC beam-column connections has been determined and interpreted in detail. Besides, a finite element model has been established for verification and comparison of the experimental results by using ABAQUS software. It has been demonstrated that concrete strength, shear reinforcement ratio, and impact energy significantly affect the impact behavior of RC column-beam connections.

Variation of Material Properties of Fire-killed Timber - Impact of Time on Degradation of Mechanical Properties - (산불 피해목의 재질변화에 관한 연구(II) - 산불 피해 소나무의 경시적 재질변화 -)

  • Park, Jung-Hwan;Park, Byung-Soo;Kim, Kwang-Mo;Lee, Do-Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.30-35
    • /
    • 2008
  • Degradation of mechanical properties of fire-killed Korean red pine has been investigated after death in 5 years period. Impact bending absorbed energy was the most sensitive property by elapsed time after forest fire. It is an indication of incipient decay of the wood and can be useful indicator to monitor any change of mechanical property of fire-killed tree after death. Degradation of mechanical properties was more pronounced in sapwood than heartwood. Impact bending absorbed energy was more reduced than any other properties in both sapwood and heartwood, while compressive strength was least impacted by elapsed time after forest fire. It is recommended that the fire-killed Korean red pine can be harvested in one year after the fire for industrial uses by considering decay and consequent changes of mechanical properties.

Deflection and bending characteristics of embedded functionally graded porous plate with bi-directional thickness variation subjected to bi-sinusoidal loading

  • Rajat Jain;Mohammad Sikandar Azam
    • Steel and Composite Structures
    • /
    • v.51 no.6
    • /
    • pp.601-617
    • /
    • 2024
  • This work aims to explore the static behaviour of a tapered functionally graded porous plate (FGPP) with even and uneven porosity distributions resting on two parametric elastic foundations. The plate under investigation is subjected to bi-sinusoidal loading and the edges of the plate are exposed to different combinations of edge restrictions. In order to examin the static behaviour, bending factors (BF) related to bending and normal stresses have been evaluated using classical plate theory. To achieve this, the governing equations have been derived employing the energy concept. And to solve it, the Rayleigh-Ritz method with an algebraic function has been utilised; it is simple, precise, and computationally intensive. After convergence and validation analyses, new findings are made available. The BF of the plate have been exhaustively examined to explain the influence of aspect ratios, material property index, porosity factor, taper factor, and Winkler and Pasternak stiffness. It is observed that the BF of an elastically supported FGPP are influenced by the index of material propery and the aspect ratio. Findings also indicate that the impact of porosity is more when it is spread evenly, as opposed to when it is unevenly distributed. Further, the deformed plate's structure is significantly influenced by the different thickness variations. Examination of bending characteristics of FGPP having different new cases of thickness variations with different types of porosity distribution under fifteen different mixed edge constraints is the prime novality of this work. Results presented are reliable enough to be taken into account for future studies.

A Study on Properties with Particle Size and Type of Aluninum in Pre-painted Basecoat of Automotive (자동차 선도장용 베이스코트에서 알루미늄 입자 크기와 형태에 따른 물성 연구)

  • Lee, Jae Woo;Li, Mei-Chun;Cho, Ur Ryong
    • Elastomers and Composites
    • /
    • v.49 no.2
    • /
    • pp.160-166
    • /
    • 2014
  • The formulation of six basecoats was designed using aluminium pastes for the per-painted system in the automotive. The aluminium pastes contain pancake type metallic pigment, #501, #801, #601 and cornflake type metallic pigment, #750, #770, #790. The relative cure density of the basecoat increased in order of #501, #801, #601, #750, #770, #790. T-bending, impact resistance, and taping adhesion showed increment with increasing cure density. In the appearance( combined factor) test on cornflake type pigment, The basecoat including the smallest particle size pigment, #790 resulted in the best combined factor compared to other two systems(#750, #770).

Effect of length and content of steel fibers on the flexural and impact performance of self-compacting cementitious composite panels

  • Denise-Penelope N. Kontoni;Behnaz Jahangiri;Ahmad Dalvand;Mozafar Shokri-Rad
    • Advances in concrete construction
    • /
    • v.15 no.1
    • /
    • pp.23-39
    • /
    • 2023
  • One of the important problems of concrete placing is the concrete compaction, which can affect the strength, durability and apparent quality of the hardened concrete. Therefore, vibrating operations might be accompanied by much noise and the need for training the involved workers, while inappropriate functioning can result in many problems. One of the most important methods to solve these problems is to utilize self-compacting cementitious composites instead of the normal concrete. Due to their benefits of these new materials, such as high tensile, compressive, and flexural strength, have drawn the researchers' attention to this type of cementitious composite more than ever. In this experimental investigation, six mixing designs were selected as a base to acquire the best mechanical properties. Moreover, forty-eight rectangular composite panels with dimensions of 300 mm × 400 mm and two thickness values of 30 mm and 50 mm were cast and tested to compare the flexural and impact energy absorption. Steel fibers with volume fractions of 0%, 0.5% and 1% and with lengths of 25 mm and 50 mm were imposed in order to prepare the required cement composites. In this research, the composite panels with two thicknesses of 30 mm and 50 mm, classified into 12 different groups, were cast and tested under three-point flexural bending and repeated drop weight impact test, respectively. Also, the examination and comparison of flexural energy absorption with impact energy absorption were one of the other aims of this research. The obtained results showed that the addition of fibers of longer length improved the mechanical properties of specimens. On the other hand, the findings of the flexural and impact test on the self-compacting composite panels indicated a stronger influence of the long-length fibers.

Smart Honeycomb Sandwich Panels With Damage Detection and Shape Recovery Functions

  • Okabe, Yoji;Minakuchi, Shu;Shiraishi, Nobuo;Murakami, Ken;Takeda, Nobuo
    • Advanced Composite Materials
    • /
    • v.17 no.1
    • /
    • pp.41-56
    • /
    • 2008
  • In this research, optical fiber sensors and shape memory alloys (SMA) were incorporated into sandwich panels for development of a smart honeycomb sandwich structure with damage detection and shape recovery functions. First, small-diameter fiber Bragg grating (FBG) sensors were embedded in the adhesive layer between a CFRP face-sheet and an aluminum honeycomb core. From the change in the reflection spectrum of the FBG sensors, the debonding between the face-sheet and the core and the deformation of the face-sheet due to impact loading could be well detected. Then, the authors developed the SMA honeycomb core and bonded CFRP face-sheets to the core. When an impact load was applied to the panel, the cell walls of the core were buckled and the face-sheet was bent. However, after the panel was heated over the reverse transformation finish temperature of the SMA, the core buckling disappeared and the deflection of the face-sheet was relieved. Hence the bending stiffness of the panel could be recovered.

Investigation into static and dynamic characteristics of ISB panels with the expanded metal as an internally structured material (익스펜디드 금속을 내부 구조체로 가지는 ISB 판넬의 정적.동적 특성 분석)

  • Ahn D.G.;Lee S.H.;Kim M.S.;Hahn G.Y.;Jung C.G.;Yang D.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.832-835
    • /
    • 2005
  • The objective of this research work is to investigate into static and dynamic characteristics of ISB panels with the expanded metal as an internally structured material. In order to investigate static and dynamic characteristics of ISB panels, several experiments, the tensile test, three-point bending test and impact test, are carried out. From the results of the experiments, the mechanical properties, bending stiffness and impact absorption energy of the ISB panel have been obtained. In addition, it has been shown that the static and dynamic characteristics of ISB panel are highly dependent on the crimping angle of the pyramidal structure for the expanded metal.

  • PDF

Dynamic Fracture Properties of Nylon Thermoplastic Material Depending on Notch Angle with Charpy Impact Machine and Finite Element Method (유한요소법과 샤피충격시험기에 의한 노치각도에 따른 나일론 열가소성 플라스틱 재료의 파괴특성)

  • Park, Myung-Kyun;Lee, Jung-Won;Kim, Tae-Ok
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • The notched Charpy impact test is one of the most prevalent techniques used to characterize the effect of high impulse loads on polymeric materials. In this study, a method of analysis in nylon plastic materials is suggested to evaluate the critical strain energy release rate for variation of notch angles from the Charpy impact energy measurement. Instrumented Charpy impact tester was used to extract ancillary information concerning fracture parameters in addition to total fracture properties and maximum critical load. The dynamic stress intensity factor of nylon plastic material was calculated for the ASTM Charpy specimen from the obtained maximum critical load. Also, the finite element model was developed to figure out the stress distributions for Charpy specimen with different notch angles subject to 3 point bending load which is equivalent to the load applied in the experiment.

  • PDF

The Improvement of SNCM220 Winding Shaft in Mechanical Properties by Heat Treatment (SNCM220 강 권축의 열처리를 통한 기계적성질 향상)

  • 이호성
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.3
    • /
    • pp.61-67
    • /
    • 1998
  • To find out the reason of fracture, specimens were made from the fractured winding shaft and the mechanical properties as well as their microstructures were investigated. Several heat treatments. including caburizing and tempering were carried out to improve the microstructure, mechanical properties, fatigue crack propagation and rotating bending fatigue characteristics. Through these experiments, following conclusions were obtained. (1) Carburized and tempered specimens showed greatly improved mechanical properties including impact energy, hardness and strength. (2) The fatigue strength of the carburized and tempered specimens increased more than twice than that of the original fractured winding shaft. (3) Crack propagation of the carburized and tempered specimens were faster than that of the original fractured speciens under the same △K. However, it is believed that, in the early stage, the fatigue crack initiation and growth for the carburized and tempered specimen is more difficult.

  • PDF

Combining different forms of statistical energy analysis to predict vibrations in a steel box girder comprising periodic stiffening ribs

  • Luo, Hao;Cao, Zhiyang;Zhang, Xun;Li, Cong;Kong, Derui
    • Steel and Composite Structures
    • /
    • v.45 no.1
    • /
    • pp.119-131
    • /
    • 2022
  • Due to the complexity of the structure and the limits of classical SEA, a combined SEA approach is employed, with angle-dependent SEA in the low- and mid-frequency ranges and advanced SEA (ASEA) considering indirect coupling in the high-frequency range. As an important component of the steel box girder, the dynamic response of an L-junction periodic ribbed plate is calculated first by the combined SEA and validated by the impact hammer test and finite element method (FEM). Results show that the indirect coupling due to the periodicity of stiffened plate is significant at high frequencies and may cause the error to reach 38.4 dB. Hence, the incident bending wave angle cannot be ignored in comparison to classical SEA. The combined SEA is then extended to investigate the vibration properties of the steel box girder. The bending wave transmission study is likewise carried out to gain further physical insight into indirect coupling. By comparison with FEM and classical SEA, this approach yields good accuracy for calculating the dynamic responses of the steel box girder made of periodic ribbed plates in a wide frequency range. Furthermore, the influences of some important parameters are discussed, and suggestions for vibration and noise control are provided.