• Title/Summary/Keyword: impact bending energy

Search Result 93, Processing Time 0.024 seconds

VHCF Characteristics of SCMH2 Steel Depending on the Surface Treatment Conditions (SCMH2 고속회전축재의 표면처리조건에 따른 VHCF 피로특성에 관한 연구)

  • Suh, C.M.;Suh, C.H.;Suh, M.S.
    • Journal of Welding and Joining
    • /
    • v.31 no.4
    • /
    • pp.47-53
    • /
    • 2013
  • SCMH2 steel is widely used in the industrial members of car and tractor. This study focused on material properties and evaluation technology of the SCMH2 steel regarding the surface treatment followed by carburizing and nitriding, by means of impact test, hardness test. and fatigue test including HCF (high cycle fatigue) and VHCF (very high cycle fatigue). Drop weight impact tester (Instron, 9250 Hv) and Cantilever type rotating-bending fatigue tester (YRB200, 3150 rpm) were used to characterize the SCMH2 standard specimen before and after carburizing/nitriding. In order to understand those effects on fatigue characteristics and material properties, the fractured surfaces were carefully observed and analyzed by SEM (scanning electron microscope) and EDS (energy-dispersive X-ray spectroscopy).

An Experimental Study on the Impact Energy Absorption Mechanism of CFRP/Al Compound Square Tube (CFRP/Al 혼성 사각부재의 충격에너지 흡수 메카니즘의 실험적 고찰)

  • Hwang, Woo Chae;Cha, Cheon Seok;Yang, Yong Jun;Jung, Jong An;Yang, In Young
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.6
    • /
    • pp.12-17
    • /
    • 2015
  • In this study, the collapse characteristic of CFRP/Al compound square tube was investigated experimentally. The conclusions are as follows; The impact collapse characteristic of CFRP/Al compound square tube was found to be the most superior stacking conditions $[90^{\circ}]_8$. It showed that a very stable collapse mode was crushing. In the member with $[0_2{^{\circ}}/90_2{^{\circ}}]_s$ and $[90_2{^{\circ}}/0_2{^{\circ}}]_s$, stacking conditions, $0^{\circ}$ fibers were splayed to the external by laminar bending, while the $90^{\circ}$ fibers were held between the folds of the aluminum member by laminar bending, local buckling and transverse crack. In the member with $[45_2{^{\circ}}/45_2{^{\circ}}]_s$ stacking conditions, fibers were held between the folds of the aluminum member by local buckling and transverse crack.

Bending and buckling of spinning FG nanotubes based on NSGT

  • Zhang, Liang;Ko, Tzu-Hsing
    • Computers and Concrete
    • /
    • v.30 no.4
    • /
    • pp.243-256
    • /
    • 2022
  • The static analysis of spinning functionally graded (FG) nanotube on the basis of the nonlocal strain gradient theory (NSGT) is presented. The high-order beam theory is employed for mathematical modeling of the tube structures according to the Sinusoidal shear deformation beam theory. The energy conservation principle is operated to generate the equations. The centrifugal force is assumed along the tube length due to the rotating of the tube, moreover, the nanotube is made of functionally graded material (FGM) composed of ceramic and metal phases along the tube radius direction. The generalized differential quadratic method (GDQM) is utilized to solve the formulations. Finally, the numerical results are discussed in detail to examine the impact of different relevant parameters on the bending the buckling behavior of the rotating nanotube.

Model-based localization and mass-estimation methodology of metallic loose parts

  • Moon, Seongin;Han, Seongjin;Kang, To;Han, Soonwoo;Kim, Munsung
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.846-855
    • /
    • 2020
  • A loose part monitoring system is used to detect unexpected loose parts in a reactor coolant system in a nuclear power plant. It is still necessary to develop a new methodology for the localization and mass estimation of loose parts owing to the high estimation error of conventional methods. In addition, model-based diagnostics recently emphasized the importance of a model describing the behavior of a mechanical system or component. The purpose of this study is to propose a new localization and mass-estimation method based on finite element analysis (FEA) and optimization technique. First, an FEA model to simulate the propagation behavior of the bending wave generated by a metal sphere impact is validated by performing an impact test and a corresponding FEA and optimization for a downsized steam-generator structure. Second, a novel methodology based on FEA and optimization technique was proposed to estimate the impact location and mass of a loose part at the same time. The usefulness of the methodology was then validated through a series of FEAs and some blind tests. A new feature vector, the cross-correlation function, was also proposed to predict the impact location and mass of a loose part, and its usefulness was then validated. It is expected that the proposed methodology can be utilized in model-based diagnostics for the estimation of impact parameters such as the mass, velocity, and impact location of a loose part. In addition, the FEA-based model can be used to optimize the sensor position to improve the collected data quality in the site of nuclear power plants.

Fracture Characteristics of Carbonized Silicon Grinding Wheels (탄화규소 연삭숫돌의 파괴특성)

  • Oh, Dong-Seuk;Lee, Byong-Gon
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.4
    • /
    • pp.45-51
    • /
    • 2002
  • In this study, the fracture characteristics of carbonized silicon grinding wheels were examined with tensile, compression, impact and bending test. The experiment was performed for the various grinding wheels with grain size #46, #80, and grade H, L, P, and one vitrified bond and one structure No.7. Also the centrifugal fracture rpm of carbonized silicon grinding wheels were measured and compared with the calculated values for the various wheel diameters and thicknesses. The results showed that the fracture tensile strength was $1.5~2.0Kg_f/mm^2$, and it was increased by decreasing grain size and increasing grade. The fracture compression loads were $1,600~3,000Kg_f$, and the inner stress was higher than outer's. And the absorption energy of impact test was 3.3~4.7 J, and it was increased by decreasing grain size but it was not effected by grade. The fracture bending stress was $0.1~0.2Kg_f/mm^2$, and it was increased by decreasing grain size and increasing grade. The centrifugal fracture rpm of carbonized silicon grinding wheel was about 8,500~12,000 and agreed well with the calculated value, and it was increased by decreasing diameter. However, it was almost constant for the reduction of wheel thickness.

A Study on the Fracture Toughness Characteristics of FCAW Weldment of Steel for Offshore Structures (해양 구조물용 강재 FCAW 용접부의 파괴인성 특성에 관한 연구)

  • Kang Sung-Won;Kim Myung-Hyun;Kim Yong-Bin;Shin Yong-Taek;Lee Hae-Woo
    • Journal of Welding and Joining
    • /
    • v.22 no.6
    • /
    • pp.57-63
    • /
    • 2004
  • Fracture toughness is an important parameter in designing offshore structures to ensure resistance to fracture at various temperatures. In this study, a series of experiments is carried out to obtain fracture toughness values (CTOD) of API 2W Gr.50B, welded using FCAW(Flux Cored Arc Weld). In particular, a comparison of absorbed impact energy and CTOD values are made with respect to two different welding groove shapes; double-V-groove and double-bevel-groove. Charpy impact tests are performed for specimens sampled near the root gap, and CTOD tests are carried out for three point bending specimens having the notch at weld zone. While Charpy impact test result is determined to be a good qualitative measure of fracture toughness, no quantitative correspondence between impact absorbed energy and CTOD values was found. Based on the experiment, it is observed that double-V-groove welds give lower transition temperature than those of double-bevel-groove.

The Penetration Characteristics of CFRP Laminated Shells on the Change of Stacking Sequences and Curvatures (적층구성 및 곡률 변화에 따른 CFRP 적층쉘의 관통특성)

  • Cho, Young-Jea;Kim, Young-Nam;Yang, In-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.79-85
    • /
    • 2006
  • CFRP(Carbon Fiber Reinforced Plastics) of the advanced composite materials as structural materials for vehicle, has a wide application in light-weigh structural materials of airplanes, ships and automobiles because of high strength and stiffness, However, there is a design variable to be considered in practical application of the laminate composite materials, these materials are vulnerable to transverse impact. This paper is to study the effects of stacking sequence and curvature on the penetration characteristics of composite laminate shell. They are stacked to $[0_3/90_3]S,\;[90_3/0_3]s\;and\;[0_2/90_3/0]s,\;[90_2/0_3/90]s$ and their interlaminar number two and four. They are manufactured to various curvature radius (R=100, 150, 200mm and $\infty$), When the specimen is subjected to transverse impact by a steel ball, the velocity of the steel ball was measured both before and after impact by determing the time for it to pass two ballistics-screen sensors located a known distance apart. The critical penetration energy of specimen A and B with less interfaces were a little higher than those of C and D. As the curvature increases, the critical penetration energy increases linearly because the resistance to the in-plane deformation as well as bending deformation increases, which need higher critical penetration energy. The specimen A and C have higher critical penetration energy than B and D because of different stacking sequences. We examined crack length through a penetration test. For the specimen A with 2interfaces, the longest circumferential direction crack length were observed on the first interface from the impact point. For the specimen B 4-interface, the longest circumferential direction crack length were observed on the second interface from the impact point.

Dynamic behavior of SRC columns with built-in cross-shaped steels subjected to lateral impact

  • Liu, Yanhua;Zeng, Lei;Liu, Changjun;Mo, Jinxu;Chen, Buqing
    • Structural Engineering and Mechanics
    • /
    • v.76 no.4
    • /
    • pp.465-477
    • /
    • 2020
  • This paper presents an investigation on the dynamic behavior of SRC columns with built-in cross-shaped steels under impact load. Seven 1/2 scaled SRC specimens were subjected to low-speed impact by a gravity drop hammer test system. Three main parameters, including the lateral impact height, the axial compression ratios and the stirrup spacing, were considered in the response analysis of the specimens. The failure mode, deformation, the absorbed energy of columns, as well as impact loads are discussed. The results are mainly characterized by bending-shear failure, meanwhile specimens can maintain an acceptable integrity. More than 33% of the input impact energy is dissipated, which demonstrates its excellent impact resistance. As the impact height increases, the flexural cracks and shear cracks observed on the surface of specimens were denser and wider. The recorded time-history of impact force and mid-span displacement confirmed the three stages of relative movement between the hammer and the column. Additionally, the displacements had a notable delay compared to the rapid changes observed in the measured impact load. The deflection of the mid-span did not exceed 5.90mm while the impact load reached peak value. The impact resistance of the specimen can be improved by proper design for stirrup ratios and increasing the axial load. However, the cracking and spalling of the concrete cover at the impact point was obvious with the increasing in stiffness.

A study on the Spectra reinforcement composite of its ballistic performance (방탄용 Spectra 섬유 강화 복합재료에 관한 연구)

  • 강은영;윤영기;윤희석
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.83-86
    • /
    • 2001
  • This paper presents an investigation of the contribution of fibers in energy absorption during impact and the effect of resin types on properties of the high strength polyethylene (Spectra-900 PE) composite. In high strength polyethylene fiber, main impact energy absorbing mechanism was tensile breakage and deformation of fiber. Two types of resin were examined : Unsaturated polyester (UP) and Epoxy. Tensile and 3-point bending test have been performed to investigate the changes of mechanical properties. In tensile and flexural testes, the Spectra Composite prepregged with UP showed higher properties than Spectra Composite prepregged with epoxy.

  • PDF

Impact Energy Absorbing Capability of Metal/Polymer Hybrid Sheets (금속/폴리머 접합강의 충격 특성에 대한 실험적 연구)

  • Kong, Kyungil;Kwon, O Bum;Park, Hyung Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.2
    • /
    • pp.137-142
    • /
    • 2017
  • Recently, the reduction of vehicle weight has been increasingly studied, in order to enhance the fuel efficiency of passenger cars. In particular, the seat frame is being studied actively, owing to considerations of driver safety from external impact damage. Therefore, this study focuses on high strength steel sheet (SPFC980)/polymer heterojunction hybrid materials, and their performance in regards to impact energy absorption. The ratio of impact energy absorption was observed to be relatively higher in the SPFC980/polymer hybrid materials under the impact load. This was found by calculating the equivalent flexural rigidity, which is the bending effect, according to the Castigliano theorem. An efficient wire-web structure was investigated through the simulation of different wire-web designs such as triangular, rectangular, octagonal, and hexagonal structures. The hexagonal wire-web structure was shown to have the least impact damage, according to the simulations. This study can be utilized for seat frame design for passengers' safety, owing to efficient impact absorption.