• 제목/요약/키워드: impact absorbance

검색결과 18건 처리시간 0.018초

Microplate-Based Oxygen Radical Absorbance Capacity (ORAC) Assay of Hydrophilic and Lipophilic Compartments in Plasma

  • Kwak Ho Kyung;Blumberg Jeffrey B.;Chen Chung Yen;Milbury Paul E.
    • Nutritional Sciences
    • /
    • 제9권1호
    • /
    • pp.48-54
    • /
    • 2006
  • Methods have been developed to evaluate the total antioxidant capacity of foods and plasma but limitations are associated with their ability to determine precisely the contribution of lipophilic antioxidants in a lipid milieu as well as interactions among them Thus, we modified the Oxygen Radical Absorbance Capacity (ORAC) assay to determine the peroxyradical scavenging ability of both hydrophilic and lipophilic compartments in plasma The hydrophilic ORAC assay was performed in a phosphate buffer system utilizing 2,2'-azobis (2-amidinopropane) dihydrochloride as a peroxyradical generator and fluorescein as the target The lipophilic ORAC assay was carried out in a dimethylsulfoxide :butyronitrile (DMSO/BN, 9:1 v/v) system using 2,2'-azobis (2,4-dimethyl valeronitrile) as a peroxyradical generator and BODIPY C11 581/591 as the target Analyses were conducted in bovine serum supplemented with water - and lipid - soluble antioxidants and in human plasma. Albumin (0.5$\sim$5 g/dL) and uric acid (0.1$\sim$0.5 $\mu$mol/L) increased hydrophilic ORAC values in a dose-dependent fashion ($R^{2}$=0.97 and 0.98, respectively) but had no impact on lipophilic ORAC values. $\alpha$-Tocopherol (15$\sim$200 $\mu$mol/L) increased lipophilic ORAC values in a dose-dependent fashion ($R^{2}$=0.94); neither $\alpha$-tocopherol nor $\beta$-carotene had an impact on hydrophilic ORAC values. However, addition of $\beta$-carotene at physiological concentration (0.23$\sim$1.86 $\mu$mol/L), either alone or in combination with other carotenoids, had no significant impact on lipophilic ORAC values. Thus, while assays of 'total antioxidant capacity' in biological matrices would be a useful research and clinical tool, existing methods are limited by the lack of complete responsiveness to the full range of dietary antioxidants.

A Feasibility Study of Wood-plastic Composite Paver Block for Basic Rest Areas

  • Yang, Sungchul
    • Journal of the Korean Wood Science and Technology
    • /
    • 제47권1호
    • /
    • pp.51-65
    • /
    • 2019
  • A wood-plastic composite (WPC) paver block was manufactured using wood chips waste through an extrusion process, and it was intended to be used for paving in basic rest areas. The first stage in this study covered preliminary tests in terms of flexural strength and dimensional swelling to determine the optimal WPC compounding mix condition, by variation of the WPC ingredients. Next, three different paver blocks including the WPC block, a non-porous cement block, and a porous cement block were tested in terms of various material properties in the laboratory. Finally, two outdoor test sections of the proposed paver blocks were prepared to simulate a basic rest area. Test results indicated that the flexural strength of the WPC paver blocks was about 1.6 times greater than that of the tested cement paver blocks. The WPC block pavement was unaffected by water buoyance as well as volume expansion due to swelling. Results from the impact absorbance test and light falling weight deflectometer (LFWD) test clearly showed that the WPC block paving system marginally satisfied the comfortable and safe hardness range from the pedestrians' perspective, while the results demonstrated that it is structurally sound for application as a road paving block.

Novel polyvinyl alcohol film dosimeter containing 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide dye for high dose application

  • Khalid A. Rabaeh;Ahmed A. Basfar;Issra' M.E. Hammoudeh
    • Nuclear Engineering and Technology
    • /
    • 제55권9호
    • /
    • pp.3383-3387
    • /
    • 2023
  • A new dyed polyvinyl alcohol (PVA) film dosimeter based on 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MMT) tetrazolium dye is proposed in this study for measuring high gamma radiation dose. Gamma cell irradiator that contains Co-60 gamma-ray source was used to expose the novel MMT-PVA films to different doses up to 25 kGy. The changed in optical property of irradiated and unirradiated films were characterized by UV-Vis spectrophotometer. The results show that the dose sensitive and the linear range of irradiated films were increased considerably with increase of MMT concentration from 1 to 5 mM. The dose response of dyed PVA film changed substantially with changing relative humidity (12-74%) as well as irradiation temperature (10-40 ℃). The absorbance of the unirradiated films does not change up to 10 days in dark while a significant increase in their absorbance was reported for similar films under fluorescent light. The irradiated dosimeters that kept in dark showed a perfect stability for 54 days. It was found that no obvious impact of dose rate on the irradiated MMT-PVA film dosimeters.

LOCAL COLLISION SIMULATION OF AN SC WALL USING ENERGY ABSORBING STEEL

  • Chung, Chul-Hun;Choi, Hyun;Park, Jaegyun
    • Nuclear Engineering and Technology
    • /
    • 제45권4호
    • /
    • pp.553-564
    • /
    • 2013
  • This study evaluates the local damage of a turbine in an auxiliary building of a nuclear power plant due to an external impact by using the LS-DYNA finite element program. The wall of the auxiliary building is SC structure and the material of the SC wall plate is high manganese steel, which has superior ductility and energy absorbance compared to the ordinary steel used for other SC wall plates. The effects of the material of the wall, collision speed, and angle on the magnitude of the local damage were evaluated by local collision analysis. The analysis revealed that the SC wall made of manganese steel had significantly less damage than the SC wall made of ordinary steel. In conclusion, an SC wall made of manganese steel can have higher effective resistance than an SC wall made of ordinary steel against the local collision of an airplane engine or against a turbine impact.

촉매성 산화물 전극을 이용한 페놀의 전기화학적 분해 (Electrochemical Degradation of Phenol Using Dimensionally Stable Anode)

  • 김동석;박영식
    • 한국환경과학회지
    • /
    • 제22권8호
    • /
    • pp.999-1007
    • /
    • 2013
  • Electrochemical degradation of phenol was evaluated at DSA (dimensionally stable anode), JP202 (Ru, 25%; Ir, 25%; other, 50%) electrode for being a treatment method in non-biodegradable organic compounds such as phenol. Experiments were conducted to examine the effects of applied current (1.0~4.0 A), electrolyte type (NaCl, KCl, $Na_2SO_4$, $H_2SO_4$) and concentration (0.5~3.0 g/L), initial phenol concentration (12.5~100.0 mg/L) on phenol degradation and $UV_{254}$ absorbance as indirect indicator of by-product degraded phenol. It was found that phenol concentration decreased from around 50 mg/L to zero after 10 min of electrolysis with 2.5 g/L NaCl as supporting electrolyte at the current of 3.5 A. Although phenol could be completely electrochemical degraded by JP202 anode, the degradation of phenol COD was required oxidation time over 60 min due to the generation of by-products. $UV_{254}$ absorbance can see the impact of as an indirect indicator of the creation and destruction of by-product. The initial removal rate of phenol is 5.63 times faster than the initial COD removal rate.

The impact fracture behaviors of CFRP/EVA composites by drop-weight impact test

  • Go, Sun-Ho;Kim, Hong-Gun;Shin, Hee-Jae;Lee, Min-Sang;Yoon, Hyun-Gyung;Kwac, Lee-Ku
    • Carbon letters
    • /
    • 제21권
    • /
    • pp.23-32
    • /
    • 2017
  • A drop weight impact test was conducted in this study to analyze the mechanical and thermal properties caused by the changes in the ratio of carbon fiber reinforced plastic (CFRP) to ethylene vinyl acetate (EVA) laminations. The ratios of CFRP to EVA were changed from 10:0 (pure CFRP) to 9:1, 8:2, 6:4, and 5:5 by manufacturing five different types of samples, and at the same time, the mechanical/thermal properties were analyzed with thermo-graphic images. As the ratio of the CFRP lamination was increased, in which the energy absorbance is dispersed by the fibers, it was more likely for the brittle failure mode to occur. In the cases of Type 3 through Type 5, in which the role of the EVA sheet is more prominent because it absorbs the impact energy rather than dispersing it, a clear form of puncture failure mode was observed. Based on the above results, it was found that all the observation values decreased as the EVA lamination increased compared with the CFRP lamination. The EVA lamination was thus found to have a very important role in reducing the impact. However, the strain and temperature were inversely propositional.

Impact of Water Quality on the Formation of Bromate and Formaldehyde during Water Ozonation

  • Lee, Chung-Youl;Lee, Yoon-Jin
    • 한국환경보건학회지
    • /
    • 제33권5호
    • /
    • pp.441-450
    • /
    • 2007
  • 본 연구는 humic acid 및 bromide를 함유한 상수 원수에 오존 처리를 수행함에 있어 수질 특성 및 공정조건에 따른 bromate 및 formaldehyde 의 생성을 고찰하였다 . 회분식 실험장치를 이용하여 오존의 주입농도, DOC 농도, bromide 농도, pH, 알칼리도 및 반응 시간을 변화시키면서 오존처리 시 생성되는 대표적인 부산물인 bromate 및 formaldehyde의 거동을 파악하였다. 본 연구에서 검토된 영향 인자 중 수중의 pH조건은 bromate 및 formaldehyde의 생성에 가장 중요한 인자로 나타났다. DOC(dissolved organic carbon) 농도가 증가할수록 bromate 생성은 감소하였고 formaldehyde 의 생성은 증가하였다. 오존처리를 통해 UV254 는 효율적으로 감소되었고, UV254의 감소율 및 오존 농도는 선형 관계를 나타냈다.

Kinetics study of photo-degradation of poly(Vinyl Chloride) films in presence of organotin(IV) complex derivatives

  • Alaa Mohammed;Mohammed Kadhom;Marwa Fadhil;Alhamzah D. Hameed;Ahmed Imad;Ahmed Alamiery;Muna Bufaroosha;Rahimi M. Yusop;Ali Jawad;Emad Yousif
    • 분석과학
    • /
    • 제37권4호
    • /
    • pp.251-260
    • /
    • 2024
  • As polymers became very important in our lives, their negative impact on general health and the environment raised a serious issue. Here, enhancing their life term is presented as a compromise solution between the need and harm. In the study, six PVC films, the plain and five filled with improvers, underwent radiation exposure for 300 hours at room temperature to investigate their photodegradation rates. The modified films were embedded with organotin(IV) complex derivatives (Ph3SnL, Ph2SnL2, Bu3SnL, Bu2SnL2, and Me2SnL2 (where L is levofloxacin)), and their effectiveness was evaluated. The PVC films were compared before and after exposure to various tests including UV-Vis spectroscopy, gel content analysis, theoretical calculations, and EDX microscopy. Findings indicated that the presence of organotin(IV) complex derivatives, particularly Ph3SnL, notably decreased UV light absorbance and the amount of gel content in PVC sheets in comparison to untreated PVC. Furthermore, EDX analysis showed that the PVC-Ph3SnL blend exposed to radiation exhibited the highest chlorine content, reaching 30 %. This blend demonstrated superior efficacy in stabilizing the polymeric materials.

Butyl고무와 EPDM고무 블렌드의 경화특성, 물리적 성질 및 내오존성 (Cure Characteristics, Physical Properties and Ozone Resistance of Butyl Rubber and EPDM Rubber Blends)

  • 박찬영;황영배
    • Elastomers and Composites
    • /
    • 제46권4호
    • /
    • pp.329-334
    • /
    • 2011
  • 일반적으로 butyl 고무(IIR : isobutylene isoprene rubber)는 우수한 내기체투과성 및 저반발 탄성체로서 우수한 충격흡수성을 갖는다. 본 실험에서는 butyl고무에 EPDM(ethylene propylene diene monomer)을 기계적 혼련법으로 blend 혼련물을 제조하여 이들의 가교 거동, 물리적 성질 및 내오존성 등을 측정하였다. EPDM 고무량이 증가할수록 최적 가황시간이 단축되는 경향을 보였다. 기체투과속도 테스트에 의한 내기체투과성 측정 결과 butyl고무량이 50 wt% 이상일 경우에는 기체투과도가 현저히 감소하였다. 한편 butyl rubber/EPDM 블렌드의 경우에 EPDM의 함량이 25 wt.% 이상 함유될 경우 내오존성이 향상되어 50 pphm, $50^{\circ}C$, 120시간 조건에서도 아무런 표면변화가 없었다.

Impact of High Temperature on the Maillard Reaction between Ribose and Cysteine in Supercritical Carbon Dioxide

  • Xu, Honggao;He, Wenhao;Liu, Xuan;Gao, Yanxiang
    • Food Science and Biotechnology
    • /
    • 제18권1호
    • /
    • pp.66-72
    • /
    • 2009
  • An aqueous ribose-cysteine model system (initial pH 5.6) was conventionally heated to the same browning at varying temperatures ($120-180^{\circ}C$), supercritical carbon dioxide (SC-$CO_2$, 20 MPa) was also applied on the same matrices for same periods at each temperature and about 20% reduction of the absorbance at 420 nm was observed as compared with sole thermal treatment. The headspace volatiles from Maillard reaction mixtures were analyzed by solid-phase microextraction (SPME) in combination with gas chromatography and mass spectrometry (GC-MS), and predominated with sulfur containing compounds, such as thienothiophenes, polysulfur alicyclics, thiols, and disulfides. Reaction temperature exhibited complex effects on volatiles formation and those effects became further complicated by the SC-$CO_2$ treatment. The formation of noncarbonyl polysulfur heterocyclic compounds and thienothiophenes was generally favored at high temperatures. Most volatiles were inhibited in SC-$CO_2$ as compared with thermal treatment alone, however, the well-known meaty aromatic compounds, such as thiols and disulfides, were obviously enhanced.